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Introduction Regional Analysis Models vs. Observations
Rivers deliver freshwater, nutrients, carbon, and pollutants to coastal regions, ST - P - : CS510R - SMAP
with consequences for marine habitats, primary production, eutrophication, | : '. ' G e >
: : . 60°N ol G 51
hypoxia, and the global carbon cycle. Here, and in the companion
presentation PL24A-2647, we describe the first steps towards improving the 48
representation of river runoff in Estimating the Circulation and Climate of the 30°N 45 4
Ocean (ECCO) global-ocean state estimates.
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Model and Representation of River Runoff [ 2
We use the Massachusetts Institute of Technology general circulation model 180°W 120°W 60°W 0° 60°E 120°E 180°W 43
(MITgem) in several global conﬁguratpns that havc? been Prewously developed We focus on 10 large rivers (flowing into 8 coastal regions): 1) Amazon and Orinoco, 42
and .l.Jsed by ECCO. We co.mpared jche |mpaf:t of daily, localized JRA55-do r.unoff South America, 2) Congo, Africa, 3) Changjiang, Asia, 4) Ganges and Brahamptura, | 4
(Tsujino et al. 2018) to diffuse, climatological runoff that has been previously Asia, 5) Mississippi, North America, 6) Parana, South America, 7) Mekong, Asia, N = . m =
been used by ECCO (Stammer et al. 2004; Forget et al. 2015). 8) Columbia, North America. Red circles are scaled by net river discharge. §’ “ hlf
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Climatological runoff Daily JRA55-do runoff RMSD between simulated and observed (SMAP) Sea Surface Salinity (SSS) 2 45!
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m Grid Type Runoff Forcing Grid spacing Model-data Root Mean Square Difference (RMSD) is computed for 9 model grid cells near
Cube-Sphere Climatological ~19 km the River Mouth (RM) and eight model grid cells in the Plume Extension (PE). 48 4
Cube-Sphere JRA55-do ~19 km 45
_at-Lon-Cap Climatological 55-110 km . 75
at-Lon-Cap JRA55-do 55-110 km CO“CIUS'O“S STV PR % &
_Lat-Lon-Cap Climatological 18—36 km We explored the sensitivity of modeled river plumes to: 1) realistic runoff, 2) model 60 50 40 95 90 85 128 126 124
Lat-Lon-Cap JRA55-do 18—-36 km grid spacing, and 3) model grid type. For all sensitivity experiments, the impacts are Longitude (deg)
' at-Lon-Cap JRA55-do 0—-18 km primarily local. When compared with the Soil Moisture Active Passive (SMAP)
satellite observations from Apr. 2015 to Dec. 2017, we found that: Sea Surface Salinity (SSS) difference between model simulations and
_ . . - Soil Moisture Active Passive (SMAP) observations for large (Amazon,
The sensitivity experiments can be divided in three groups: ® SSS near the mouth of large rivers improved greatly when using realistic river left column), middle (Mississippi, middle column), and small (Columbia
forcing right column) rivers.
Group 1: Sensitivity to realistic river forcing ® SSS improved greatly when decreasing nominal grid spacing from 1° to 1/3°, but
CS510C, LLC90C, and LLC270C use climatological runoff while there was minimal improvement when further decreasing grid spacing to 1/6° Group 1 experiments: LLC270C SSS is higher than SMAP, but lower in
CS510R, LLC90R, LLC270R, and LLC540R use realistic runoff. ® Model grid type had a negligible impact on SSS for coastal rivers in tropical and LLC270R for the Amazon and Mississippi. The RMSD near river mouths
o . _ temperate zones. is smaller when using realistic forcing, where runoff exceeds
- f{g;ng'Lfg;‘;g;:'ty :joLT_I;;eszrlgoRd:l grid sp.acwll% , | These results are an important first step towards predicting land-ocean-atmosphere precipitation as the dominant freshwater source.
~ v el 'ave nominal horizonta feedbacks seamlessly in next-generation earth system models. _ Group 2 experiments: Results improve greatly when increasing grid
i grid spacing of 1°, 1/3°, and 1/6°, respectively. spacing from LLC90 to LLC270; however, no further improvement is
- o . '~ obtained when using LLC540;
Group 3: Sensitivity to the model grid type References: | Group 3 experiments: No substantial difference between the two runs.
CS510R uses a cube-sphere grid (Menemenlis et al. 2005), Menemenlis, D. et al. (2005). Mon. Weather Rev., doi:10.1175/MWR2912.1 lﬂ The model grid type may impact Arctic and Antarctic rivers; further

while LLC540R uses a latitude-longitude-polar cap grid (Forget et al. 2015). Stammer, D. (2004). J. Gec?phys. Res-Ocean.s, doi:10.1029/2003JC002082 \ _analysis is needed to quantify this effect.
Forget, G. (2015). Geosci. Model Dev., d0i:10.5194/gmd-8-3071-2015
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