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Introduction
Rivers deliver freshwater, nutrients, carbon, and pollutants to coastal regions,

with consequences for marine habitats, primary production, eutrophication,

hypoxia, and the global carbon cycle. Here, and in the companion

presentation PL24A-2647, we describe the first steps towards improving the

representation of river runoff in Estimating the Circulation and Climate of the

Ocean (ECCO) global-ocean state estimates.

The sensitivity experiments can be divided in three groups:

Group 1: Sensitivity to realistic river forcing
CS510C, LLC90C, and LLC270C use climatological runoff while

CS510R, LLC90R, LLC270R, and LLC540R use realistic runoff.

Group 2: Sensitivity to the model grid spacing
LLC90R, LLC270R, and LLC540R have nominal horizontal

grid spacing of 1�, 1/3�, and 1/6�, respectively.

Group 3: Sensitivity to the model grid type
CS510R uses a cube-sphere grid (Menemenlis et al. 2005),

while LLC540R uses a latitude-longitude-polar cap grid (Forget et al. 2015).

Experiment Grid Type Runoff Forcing Grid spacing
CS510C Cube-Sphere Climatological ∼19 km 

CS510R Cube-Sphere JRA55-do ∼19 km

LLC90C Lat-Lon-Cap Climatological 55–110 km

LLC90R Lat-Lon-Cap JRA55-do 55–110 km

LLC270C Lat-Lon-Cap Climatological 18–36 km

LLC270R Lat-Lon-Cap JRA55-do 18–36 km

LLC540R Lat-Lon-Cap JRA55-do 9–18 km

Methods and Results

Model and Representation of River Runoff
We use the Massachusetts Institute of Technology general circulation model

(MITgcm) in several global configurations that have been previously developed

and used by ECCO. We compared the impact of daily, localized JRA55-do runoff

(Tsujino et al. 2018) to diffuse, climatological runoff that has been previously

been used by ECCO (Stammer et al. 2004; Forget et al. 2015).

We focus on 10 large rivers (flowing into 8 coastal regions): 1) Amazon and Orinoco, 

South America, 2) Congo, Africa, 3) Changjiang, Asia, 4) Ganges and Brahamptura, 

Asia, 5) Mississippi, North America, 6) Parana, South America, 7) Mekong, Asia, 

8) Columbia, North America. Red circles are scaled by net river discharge.

RMSD between simulated and observed (SMAP) Sea Surface Salinity (SSS)

Conclusions
We explored the sensitivity of modeled river plumes to: 1) realistic runoff, 2) model

grid spacing, and 3) model grid type. For all sensitivity experiments, the impacts are

primarily local. When compared with the Soil Moisture Active Passive (SMAP)

satellite observations from Apr. 2015 to Dec. 2017, we found that:

l SSS near the mouth of large rivers improved greatly when using realistic river

forcing

l SSS improved greatly when decreasing nominal grid spacing from 1� to 1/3�, but

there was minimal improvement when further decreasing grid spacing to 1/6�
lModel grid type had a negligible impact on SSS for coastal rivers in tropical and

temperate zones.

These results are an important first step towards predicting land-ocean-atmosphere

feedbacks seamlessly in next-generation earth system models.

Sea Surface Salinity (SSS) difference between model simulations and 

Soil Moisture Active Passive (SMAP) observations for large (Amazon, 

left column), middle (Mississippi, middle column), and small (Columbia, 

right column) rivers.

Group 1 experiments: LLC270C SSS is higher than SMAP, but lower in 

LLC270R for the Amazon and Mississippi. The RMSD near river mouths

is smaller when using realistic forcing, where runoff exceeds 

precipitation as the dominant freshwater source. 

Group 2 experiments: Results improve greatly when increasing grid 

spacing from LLC90 to LLC270; however, no further improvement is 

obtained when using LLC540;

Group 3 experiments: No substantial difference between the two runs. 

The model grid type may impact Arctic and Antarctic rivers; further 

analysis is needed to quantify this effect.

Group 3
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CS510R CS510C LLC270R LLC270C LLC90R LLC90C LLC540R
RM PE RM PE RM PE RM PE RM PE RM PE RM PE

Amazon

/ Orinoco
5.6 1.8 14.5 2.0 4.3 1.6 9.2 1.6 12.4 1.4 12.7 1.6 6.7 1.7

Congo 3.0 0.9 4.4 0.8 4.0 0.9 4.1 0.8 3.2 0.9 4.2 0.8 3.9 0.9
Changjiang 4.2 0.9 8.6 1.1 5.1 1.5 7.9 1.6 5.8 1.9 8.3 1.9 4.0 1.5

Ganges

/ Brahamptura
6.6 3.5 8.4 3.4 6.1 3.2 7.9 2.9 5.6 3.7 8.8 3.6 5.0 3.3

Mississippi 2.9 1.3 3.4 1.3 2.3 1.3 3.3 1.2 2.3 1.3 3.3 1.3 3.0 1.2
Parana 4.2 2.5 8.1 4.7 5.7 3.7 5.5 3.2 6.3 3.9 7.9 4.5 4.2 2.7

Mekong 5.2 1.4 1.5 1.2 4.7 1.9 1.6 1.2 1.4 0.9 1.5 0.8 1.7 0.9
Columbia 3.1 0.9 3.9 1.2 2.9 0.6 3.3 0.6 3.1 0.9 3.5 0.9 2.9 0.8
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Sensitivity Experiments
subsequent corrections are very different; solely empirical
in the case of ASOC, and ‘‘objective’’ within the NCEP
assimilation, followed by different empirical corrections by
LY04. In summary, since the specifics in all three
approaches are significantly different, for the present pur-
pose we can consider all three flux climatologies as inde-
pendent from each other and from the initial NCEP fields.

3. Estimation Methodology

[13] Only a brief summary of the estimation methodology
is provided, as it is discussed at length in the references
already cited. Unlike a number of other published ocean
state estimates, our (computationally intensive) methodology
is directed at achieving time-evolving fields that are con-
sistent with the general circulation model, without any
artificial sources or sinks being implied. We used the ECCO
ocean general circulation model, which is derived from the
MIT model [Marshall et al., 1997a, 1997b]. An adjoint
code to the forward model was obtained from the automatic
differentiation tool of Giering and Kaminski [1998] [see
also Marotzke et al., 1999]. Prognostic variables are hori-
zontal velocity, heat, and salt. Horizontal resolution is 1!
over ±80! latitude with 23 levels in the vertical. Free-slip
bottom boundary conditions and non-slip boundary condi-
tions at lateral walls are used. Laplacian viscosity and
diffusivities are imposed, with nh = 1 ! 104 m2/s and kh =
102 m2/s and nv = 10"3 m2/s and kv = 10"5 m2/s, in the
horizontal and vertical, respectively. The mixed layer is

modeled with the ‘‘KPP’’ code of Large et al. [1994].
Eddies are parameterized by the method of Gent and
McWilliams [1990]. Initial conditions were obtained from
the Levitus et al. [1994a, 1994b] climatological January
potential temperature and salinity fields, with the velocity
field then adjusted over a 1-month period. The initial (a
priori) model forcing consists of the first NCEP re-analysis
daily surface heat and freshwater fluxes, and twice-daily
wind stress. See Köhl et al. [2003] and http://www.
ecco-group.org for details.
[14] In contrast to the earlier 2!-resolution calculation,

river runoff was prescribed in the present estimate as time-
mean discharge. The imposed river inflow, shown in
Figure 1, was obtained from estimates of the climatological
difference between precipitation and evaporation over each
continent, which were then partitioned between neighboring
ocean basins (B. M. Fekete et al., An improved global
spatially-distributed runoff data set based on observed river
discharge and simulated water balance, unpublished report,
Complex Systems Research Center, University of New
Hampshire, 1999). Observed river discharge [Perry et al.,
1996] is used to distribute some of this runoff near river
mouths, with the remainder distributed evenly along each
continent-ocean coastline. In this calculation, these values
were added as time-constant to the surface freshwater flux
fields. Amplitudes can be as large as the equivalent of
20 m/yr of precipitation over the Amazon region, i.e., an
order of magnitude larger than the maximum net freshwater
from the atmosphere.

Figure 1. Mean river runoff from Large and Nurser [2001] which was incorporated into the forcing by
adjusting the NCEP net freshwater fluxes. Observations gave the mean runoff at the mouths of about 200
gauged rivers [Perry et al., 1996], which typically accounts for 40 to 60% of the actual total value, and
the remaining runoff into each basin from ungauged rivers was evenly distributed along its coast. The
runoff was converted into the surface freshwater flux, by spreading it out over an area near its source.
This spreading decreased exponentially with a 1000-km e-folding distance, as suggested by the
observations of surface salinity off the mouths of the Amazon and Congo rivers. In the present
computation, these values were not adjusted independently.
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Models vs. Observations

Model-data Root Mean Square Difference (RMSD) is computed for 9 model grid cells near 

the River Mouth (RM) and eight model grid cells in the Plume Extension (PE).


