IMPACT OF SURFACE WIND AND BUOYANCY FORCING ON THE ENERGETICS AND

TRANSPORT INAROTATING WIND-FORCED HORIZONTAL CONVECTION MODEL OF A
REENTRANT CHANNEL

THE UNIVERSITY Varvara Zemskova'?, Brian White?, and Alberto Scottit

of NORTH CAROLINA

st CHAPEL HILL 1University of North Carolina at Chapel Hill, USA; 2University of Toronto, Canada

SUSTAINED PETASCALE COMPUTING

 TORONTO LRIAER

Introduction

Zemskova et al (2015) calculated the global ocean energy budget : _ onall 11 " ; .
using MITgecm ECCO2 model output to show that conversion of Fig 1: Instantaneous 3D reduced gravity for WF3. ohally ahd temporally average Voo = —37 J; [ o< p v(z,y,2,t)dzdxdt

KE to APE through mean wind-driven upwelling is balanced by BF reduced gravity BE
w 0.2

removal of APE through baroclinic generation of eddies (similar | s e °
to findings in von Storch et al, 2012; Wolfe and Cessi, 2011). | N
These processes are particularly significant in the Southern
Ocean, where both buoyancy forcing though surface cooling and
strong surface winds over the ACC are present (Stewart and
Thompson, 2012; Abernathey et al, 2011).

Results

Objective: gquantify a complete energy budget, down to
dissipative scales, in an idealized model with a reentrant channel
and surface wind and buoyancy forcing representative of the
Southern Ocean.

3D Direct Numerical Simulations: resolve turbulent scales and
therefore the energy transfers from the mean wind- and
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« 5 simulations: | Fig 2: Energy diagram showing sources and sinks of and exchanges  BF: ollorr_unatec_zl by buoyan_cy-drlven mechanism of dense water sinking
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EE ;reslzdual « Major features of the Southern Ocean overturning circulation were reproduced in WF3 (simulation with
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 Boundary conditions: 0.02 realistic buoyancy and wind stress surface forcing)
* Periodic In zonal (x) direction 0.01
* Dirichlet buoyancy and Neumann u-velocity at the top 0 * As wind stress (KE generation) increases:

* No buoyancy flux, no-slip elsewhere 0 0005 001 0015 002 0025 003 0035 004 « mean and turbulent vertical buoyancy fluxes show primarily eddy compensation;
o e wm *w oy : = a ¥ . o G(ER) * residual overturning streamfunction Is sensitive to the surface wind forcing and progresses from
N 1 Z: —we N |, ' x ' buoyancy-driven to mainly wind-driven circulation significantly weakening the lower circulation cell.
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B o | SN\ '\ f’1 e * However, local diapycnal mixing rates are affected by overturning circulation dynamics that change local
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