A Practical Formulation for an Anisotropic and Nonstationary Matérn Class Correlation Operator

A Brief History of Correlation Operators in Variational Data Assimilation

Timothy Smith Patrick Heimbach

ECCO Meeting Jan. 25, 2023

Data Assimilation Context

$$\mathcal{J}(\delta \mathbf{v}) = \frac{1}{2} \underbrace{\left\| \mathbf{R}^{-1/2} \left(f(\delta \mathbf{v}) - \mathbf{d} \right) \right\|_{2}^{2}}_{\text{misfit}} + \frac{1}{2} \underbrace{\left\| \delta \mathbf{v} \right\|_{2}^{2}}_{\text{prior}}$$

$$\mathbf{u} = \mathbf{u}_0 + \delta \mathbf{u}$$
$$\delta \mathbf{u} = \mathbf{B}^{1/2} \delta \mathbf{v}$$
$$\mathbf{B}^{1/2} \coloneqq \mathbf{\Sigma} \mathbf{C}$$

Data Assimilation Context

Explicit Diffusion: Weaver and Courtier (2001)

$$\frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \mathbf{K} \nabla \mathbf{v}$$
$$\mathbf{v}(T) \simeq \left(I + \nabla \cdot \mathbf{K} \nabla\right)^N \mathbf{v}(0)$$

Good:

Explicit Diffusion: Weaver and Courtier (2001)

$$\frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \mathbf{K} \nabla \mathbf{v}$$
$$\mathbf{v}(T) \simeq \left(I + \nabla \cdot \mathbf{K} \nabla\right)^N \mathbf{v}(0)$$

Good:

- Easy to implement, diffusion already in GCMs
- Handles boundaries naturally
- Imposes Gaussian correlation structure
- Specify correlation length scale via $\mathbf{K} = L^2/T$

Explicit Diffusion: Weaver and Courtier (2001)

$$\frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \mathbf{K} \nabla \mathbf{v}$$
$$\mathbf{v}(T) \simeq \left(I + \nabla \cdot \mathbf{K} \nabla\right)^N \mathbf{v}(0)$$

Good:

- Easy to implement, diffusion already in GCMs
- Handles boundaries naturally
- Imposes Gaussian correlation structure
- Specify correlation length scale via $\mathbf{K} = L^2/T$

Bad:

• Necessary but insufficient conditions for N, usually N has to be large

Implicit Diffusion: Mirouze and Weaver (2010)

$$\frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \mathbf{K} \nabla \mathbf{v}$$

$$\mathbf{v}(T) = \left(I - \nabla \cdot \mathbf{K}\nabla\right)^{-1} \mathbf{v}(0)$$

Good:

- Implicit solve, $A\mathbf{x} = \mathbf{b} \implies$ choose tolerance, not N
- Access to correlation and inverse, see Guillet et al. (2019)

Implicit Diffusion: Mirouze and Weaver (2010)

$$\frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \mathbf{K} \nabla \mathbf{v}$$

$$\mathbf{v}(T) = \left(I - \nabla \cdot \mathbf{K} \nabla\right)^{-M} \mathbf{v}(0)$$

Good:

- Implicit solve, $A\mathbf{x} = \mathbf{b} \implies$ choose tolerance, not N
- Access to correlation and inverse, see Guillet et al. (2019)
- Imposes more generic Gaussian-like structure, via Auto-Regressive function
- Choose structure with M, Gaussian: $M \to \infty$

Implicit Diffusion: Mirouze and Weaver (2010)

$$\frac{\partial \mathbf{v}}{\partial t} = \nabla \cdot \mathbf{K} \nabla \mathbf{v}$$

$$\mathbf{v}(T) = \left(I - \nabla \cdot \mathbf{K} \nabla\right)^{-M} \mathbf{v}(0)$$

Good:

- Implicit solve, $A\mathbf{x} = \mathbf{b} \implies$ choose tolerance, not N
- Access to correlation and inverse, see Guillet et al. (2019)
- Imposes more generic Gaussian-like structure, via Auto-Regressive function
- Choose structure with M, Gaussian: $M \to \infty$

Bad:

- Even with fixed L, inconsistent correlation length scales with different ${\cal M}$

Matérn SPDE: Lindgren et al. (2011)

$$\mathbf{v} = \left(\delta - \nabla \cdot \nabla\right)^{-M} \mathbf{z}$$

$$\mathbf{z} \sim \mathcal{N}(0, I)$$

 $\mathbf{v} \sim \mathcal{N}(0, \mathbf{C}\mathbf{C}^T)$

Good:

- Corresponds to generic Gaussian-like structure, via Matérn correlation function
- Consistently achieve correlation $\sim 0.14~{\rm at}$ specified length scale
- Length scale specified in $\delta=\delta(L)$

Matérn SPDE: Lindgren et al. (2011)

$$\mathbf{v} = \left(\delta - \nabla \cdot \nabla\right)^{-M} \mathbf{z}$$

$$\mathbf{z} \sim \mathcal{N}(0, I)$$

 $\mathbf{v} \sim \mathcal{N}(0, \mathbf{C}\mathbf{C}^T)$

Good:

- Corresponds to generic Gaussian-like structure, via Matérn correlation function
- Consistently achieve correlation $\sim 0.14~{\rm at}$ specified length scale
- Length scale specified in $\delta=\delta(L)$

Bad:

• Unclear how to use parameters in nonstationary and anisotropic case

Matérn SPDE: Lindgren et al. (2011)

$$\mathbf{v} = \left(\delta - \nabla \cdot \nabla\right)^{-M} \mathbf{z}$$

$$\mathbf{z} \sim \mathcal{N}(0, I)$$

 $\mathbf{v} \sim \mathcal{N}(0, \mathbf{C}\mathbf{C}^T)$

Good:

- Corresponds to generic Gaussian-like structure, via Matérn correlation function
- Consistently achieve correlation $\sim 0.14~{\rm at}$ specified length scale
- Length scale specified in $\delta=\delta(L)$

Bad:

• Unclear how to use parameters in nonstationary and anisotropic case

Mapping Method

Define mapping $\varphi({\bf x}),$ through its Jacobian, $\Phi({\bf x})$ Length scale specified in $\delta(L)$ and $\Phi({\bf x};L)$

$$\mathbf{v} = \left(\frac{\delta}{\det\left(\Phi(\mathbf{x})\right)} - \nabla \cdot \frac{\Phi(\mathbf{x})\Phi(\mathbf{x})^T}{\det\left(\Phi(\mathbf{x})\right)}\nabla\right)^{-M} \det\left(\Phi(\mathbf{x})\right)^{-1/2} \mathbf{z}$$

Mapping Method

Define mapping $\varphi({\bf x}),$ through its Jacobian, $\Phi({\bf x})$ Length scale specified in $\delta(L)$ and $\Phi({\bf x};L)$

40

Mapping Method

Define mapping $\varphi({\bf x}),$ through its Jacobian, $\Phi({\bf x})$ Length scale specified in $\delta(L)$ and $\Phi({\bf x};L)$

Isotropic, Stationary

Anisotropic, Nonstationary the model's world

Precision & Speed in Global LLC90 Domain

We can use low precision, $\mathcal{O}(10^{-3}),$ and get the right correlation characteristics

Precision & Speed in Global LLC90 Domain

We can use low precision, $\mathcal{O}(10^{-3}),$ and get the right correlation characteristics

Summary

	Reference	Boundaries & GCM Friendly	Fixed Iterations (N)	Access to Inverse	Flexible Shape (M)	Consistent Correlation Length
Explicit Diffusion	Used by ECCO (Weaver & Courtier, 2001)	V	×	×		
Implicit Diffusion	(Mirouze & Weaver, 2010)	V	Ø	Ø		×
Mapped Matérn	(Preprint) (Smith, 2022)	Ø				V

Coming Soon to the MITgcm...

Comments are appreciated!

Either on GitHub or via email at tim.smith@noaa.gov

Smooth Package Overhaul #684

🛈 Open

timothyas opened this issue on Dec 13, 2022 \cdot 0 comments

timothyas commented on Dec 13, 2022

Member 😳 …

I worked with the smooth package quite a bit during my PhD. During that time I've noticed some things that I would like to update. At the end of the day, my goal is to add a new correlation model that I implemented as part of my PhD in the MITgcm, but I think it would be a good idea to clean up the current implementation first.

I have implemented all fixes/changes relevant to each item discussed below (except for good documentation and the proposed deprecated file removal), in my branch: https://github.com/timothyas/mitgcm/tree/rewrite-smooth See also a verification setup for the smooth package here:

https://github.com/timothyas/verification_other/tree/feature/smooth_verification

Figure: github.com/MITgcm/MITgcm/issues/684

References I

- Guillet, O., Weaver, A. T., Vasseur, X., Michel, Y., Gratton, S., and Gürol, S. (2019). Modelling spatially correlated observation errors in variational data assimilation using a diffusion operator on an unstructured mesh. *Quarterly Journal of the Royal Meteorological Society*, 145(722):1947–1967. _eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.3537.
- Lindgren, F., Rue, H., and Lindström, J. (2011). An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 73(4):423–498.
- Mirouze, I. and Weaver, A. T. (2010). Representation of correlation functions in variational assimilation using an implicit diffusion operator. *Quarterly Journal of the Royal Meteorological Society*, 136(651):1421–1443. _eprint: https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/qj.643.
- Smith, T. A. (2022). A Practical Formulation for an Anisotropic and Nonstationary Matérn Class Correlation Operator. preprint, Oceanography.
- Weaver, A. T. and Courtier, P. (2001). Correlation modelling on the sphere using a generalized diffusion equation. *Quarterly Journal of the Royal Meteorological Society*, 127(575):1815–1846.