

Downscaled Regional Modeling from ECCO Solutions

Mike Wood^{1,2} & Ian Fenty²

+ Collaborators I will mention

¹Moss Landing Marine Labs ²Jet Propulsion Laboratory, California Institute of Technology

Overview

- Question: How can we use ECCO solutions to force regional models?
- Problem: Global output is big expensive to output at high frequency
- Solution: Make a new diagnostics pkg which provides output only where you need it
- A few case studies:
 - California Current (SWOT)
 - Arctic Ocean (SASSIE)
 - Greenland Fjords
 - Darwin

diagnostics_vec

- New package for MITgcm (PR not yet submitted)
- Available at github.com/mhwood/diagnostics_vec

H mhwood / diagnostics_vec	olic	🛇 Pin
<> Code ③ Issues 11 Pull requests	🖓 Discussions 🕞 Actions 🖽	Projects 🖽 Wiki 😲 Secur
ᢞ main ▾ १ 1 branch ा⊽ 0 tags		Go to file Add file 🔻
mhwood adding iceplume and darwin variables 0f311ff on Dec 21, 2022		
🖿 doc	Update README.md	
example_configurations	Update README.md	
notebooks	adding variable periods into code	
🖿 pkg	adding iceplume and darwin variables	

diagnostics_vec

Boundary conditions for regional model

Distance Along Boundary (km)

Case Study: California Current

- Supporting SWOT Cal/Val
- Parent Model: LLC540 w/ tides
- Resolutions:
 540, 1080, 2160, 4320
- Time Duration:
 5 Years (1992-1996)

Developed with Ian Fenty and Jinbo Wang (JPL) w/ help from Carine van der Boog (JPL)

Internal Gravity Waves

L1_1080: Wvel

Case Study: Arctic Ocean

- Supporting SASSIE
- Parent Model: LLC270
- Resolutions:
 270, 1080, 4320
- Time Duration:8 Years (2015-2021)

Case Study: Greenland Fjords

- Parent Model: LLC270
- Resolution: 1080
- Time Duration:
 30 Years (1992-2021)

Subsurface Potential Temperature (257 m)

Developed with Ian Fenty & Ala Khazendar (JPL);

Case Study: Greenland Fjords

- Parent Model: 1080 East Greenland
- Resolution:500m
- Time Duration:
 22 Years (2000-2021)
 Ice front melt is driven by iceplume package

Subsurface Potential Temperature (257 m)

Ice front melt from An Nguyen and Kiki Schultz (UT Austin)

Downscaling with Darwin

- BGC package contains 31 tracers and 2 additional external forcing fields
- Parent Model: ECCO Darwin (LLC270)
- Downscaled Resolutions: 1080, 500m

Conclusions

- New diagnostics package for MITgcm
 - Output only where you want it!
- Opens up the possibilities for new downscaled model efforts from ECCO solutions

mike.wood@sjsu.edu