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Motivation

* Improve estimates of ice/ocean interactions on multi-decadal
timescales

* Provide ECCO ocean

model time-varying
fields:

grounding line position
iIce mass flux across
grounding line

iIce shelf/glacier geometry

iIceberg calving fluxes
basal melt rate

Pine Island Glacier

Grounding line retreat from ERS SAR interferometry

40km

maximum

200m
thinning
1992-2011

Reproduced from Planetary Visions / University of Edinburgh / University of Leeds / ESA
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https://www.esa.int/Applications/Observing_the_Earth/Pine_Island_retreat_on_the_radar

5-year Plan

* Model: Ice-sheet and Sea-level System Model (ISSM) 4.21
* Provide 1995-(near) present ice-sheet/shelf state

estimates
* Year 1: West
Antarctica

e Year 2: East
Antarctica

* Year 3 & 4: West

Greenland

* Year 4 & 5: East
Greenland
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State estimation strategy

* Phase 1: Initial Conditions/Spin-up

Inputs: bed geometry, ice elevation

Make a first-guess velocity field from ice stress balance (assume steady state)
From first-guess velocity, infer internal ice temperature and rigidity

Invert for basal friction by constraining to an observed “mean” velocity field

Run a short simulation to smooth initially “noisy” input fields (ice thickness, velocity,
grounding line position)

- Phase 2: Adjoint Estimation

1995-present transient simulations

Forcing: ice surface mass balance (snow + surface melt), basal shelf melt, geothermal
heating, ice-shelf calving front position

Observational constraints: time-varying ice elevation and surface velocity
Model control parameters: time-varying basal melt rate, time-invariant ice rigidity,& time-

invariant basal friction
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Models are split by ice basin

Basins represent “watershed”
catchments that are taken as
decoupled

Computational constraints lead to
solving basins independently

Smaller basins can be combined,
larger ones can be split up

Total for Antarctica ~10

Total for Greenland ~8
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Begin Phase 1 with Ronne basin
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Phase 1: Model Spinup

* Anisotropic mesh generation,
followed by parameterization

* Resolution: 1km-40km, 13k elements

+ Timesteps: 3 month timesteps for 23
years

 CPU usage: ~22 CPUs
* Forward Simulation time: 90 seconds

- Adjoint Simulation time: 16 minutes
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Phase 1: Initial Conditions/Spinup

* Solve for 1995 ice rigidity & basal friction. Use Rignot for 15t guess melt rates.
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Phase 1 - “lteration 0” Transient Control Run
« Perform transient control run (“lteration 0”), 23 year forward simulation
Ice Velocity at t=1995 (m/yr) Ice velocity difference (t=2018-1995) (m/yr)
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Phase 2: Adjoint Runs & Cost Function Formulation

« Use adjoint of ISSM to perform state estimate w/ simultaneous inversion for
observed basal friction, ice rigidity, and basal ice shelf melting rate

+ Describe our cost function in terms of Wunsch and Heimbach (2006):
T =2 [y(t) - E@)x@®)]"R(t) ' [y(t) — E(t)x(t)]
t=1
+ 0 * [xg — x(0)] " P(0) [xp — x(0)]

F0 > u(®)TQ() (),

 For our optimization problem, y = time-varying velocity and time-varying ice
surface elevation; E=mapping; R = uncertainties

+ Currently using zero weights for initial condition penalty (2nd term) and
control adjustment penalty (3rd term), to be added in the future
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Phase 2 - Adjoint Runs - Optimization
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Phase 2 - Adjoint Runs - Optimization

IS6 Misfit Optimized vs Control (Yend/

450

400

350

N N W
o o) o
o o o

J (Misfit)

[
U
o

100

50

- -DEM, 1st guess
- -Vel, 1st guess

- -Melt, 1st guess
- -Total, 1st guess
H— DEM, Optimized
—Vel, Optimized
= Melt, Optimized
— Total, Optimized

=0.38)

2020

12 JPL



Phase 2 - Adjoint Runs - Gradient Check

- Ensure validity/linearity of aradients from ISSM-AD for small step sizes/n
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ECCO ISSM - Model Consistency Check & Outputs

Vel Obs t=1996 (m/yr) Vel Model t=1996 (m/yr)
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ECCO ISSM - Model Consistency Check & Outputs
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ECCO ISSM - Current Status and Next Steps

- Completed:
+ Verify model spin up in Ronne basin
» Current status:
* Phase 2 - Estimation using transient forward/adjoint runs
* Next steps:
- Monthly timesteps, expand time series range
* Increase spatial resolution around grounding line/trouble spots
* Refine model/consistency checks (shear softening, cyclic spin-up, GL)
- Expand to other basins in West Antarctica
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