Machine learning is a useful surrogate model to
parameterize and understand sea-ice motion in the Arctic.
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Predictability

Machine learning models are used to

make one-day predictions of sea-ice
dynamics.
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Machine learning models for sea-ice drift have
fewer complexities and a lower computational cost
than traditional physics-based models.
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Physical processes now included in state-of-the-art
sea ice models such as CICE (Ed Hawkins, 2015).
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Physical processes now included in state-of-the-art
sea ice models such as CICE (Ed Hawkins, 2015).

used to understand
sea-ice motion
because they are
drawing
information from
the data.
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The machine learning models make one-day
predictions of sea-ice velocity given input data from
satellite & reanalysis sources (1992-2017).

Present-day wind velocity*:
ua,t=1 & Va,t=1
Previous-day sea-ice velocity?:

ui,t=o&vi,t=o

Previous-day sea-ice

concentration: c, .
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Present-day sea-ice velocity:

ui,t=1&vi,t=1

Model Inputs: *JRA55, Polar Pathfinder; 3Nimbus-7
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A convolutional neural network (CNN) outperforms
linear regression (LR) and persistence (PS) models.

increasing

model correlation skill

Persistence 0.69 +/- 0.02
Linear Regression §0.77 +/- 0.02
CNN 0.80 +/- 0.01
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Models that incorporate non-linear relationships
between inputs capture important information (i.e.
COrr,, > COrr ).
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Machine learning methods confirm historical results
that wind velocity has the largest relevance in
determlnlng sea-ice velomty
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The CNN outperforms the LR primarily in the central
Arctic where wind speed (A) is the dominant
predictor of ice motion.

S
3
101 ‘_5 g
A -
g g
o Z B x
z -
o @
-01 © £
g
T
-0.2
0.3
04 A

Hoffman et al. 2023, submitted



Preliminary results from Explainable Al (XAl) show
that wind velocity has the largest relevance in
determining sea-ice velocity.

Normalized XAl Relevance

wind velocity, A sea-ice velocity, B sea-ice concentration, C

Understanding sea-ice motion: XAl Hoffman et al 2023, in prep



Machine learning is a useful tool to
predict and understand
sea-ice motion in the Arctic.
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wind velocity, A sea-ice velocity, B sea-ice concentration, C

Understanding sea-ice motion: XAl vs. LR i ctat 2023 inpreo
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