Machine learning is a useful surrogate model to parameterize and understand sea-ice motion in the Arctic.

Lauren Hoffman¹, Matthew Mazloff¹, Sarah Gille¹, Donata Giglio², Cecilia Bitz³, Patrick Heimbach⁴ [1] Scripps Institution of Oceanography, [2] University of Colorado Boulder, [3] University of Washington, [4] University of Texas at Austin

Predictability

Machine learning models are used to make one-day predictions of sea-ice dynamics.

Understanding sea-ice motion

As the ice melts it is becoming more responsive to wind forcing.

> wind factor: ratio of sea-ice speed to wind speed

The wind factor is increasing!

lahoffma@eng.ucsd.edu

Machine learning models for sea-ice drift have fewer complexities and a lower computational cost than traditional physics-based models.

Physical processes now included in state-of-the-art sea ice models such as CICE (Ed Hawkins, 2015).

Machine learning models for sea-ice drift have fewer complexities and a lower computational cost than traditional physics-based models.

Matthew Mazloff¹, Patrick Heimbach² [1] Scripps Institution of Oceanography, [2] University of Texas at Austin The machine learning models make one-day predictions of sea-ice velocity given input data from satellite & reanalysis sources (1992-2017).

A convolutional neural network (CNN) outperforms linear regression (LR) and persistence (PS) models.

Models that incorporate non-linear relationships between inputs capture important information (i.e. $corr_{CNN} > corr_{LR}$).

0.9

0.8

0.6

0.5

corr_{CNN}

Machine learning methods confirm historical results that wind velocity has the largest relevance in determining sea-ice velocity.

The CNN outperforms the LR primarily in the central Arctic where wind speed (A) is the dominant predictor of ice motion.

Preliminary results from Explainable AI (XAI) show that wind velocity has the largest relevance in determining sea-ice velocity.

Understanding sea-ice motion: XAI

Hoffman et al. 2023, in prep

Machine learning is a useful tool to predict and understand sea-ice motion in the Arctic.

Machine learning models that incorporate non-linearities between inputs capture important information.

Machine learning confirmsNormalized Linear Regression
Parameterhistorical results that wind velocity has the
largest relevance in determining sea-ice velocity.

Understanding sea-ice motion: XAI vs. LR

Hoffman et al. 2023, *in prep*

Model performance vs. variability of inputs

submitted