
Machine learning is a useful surrogate model to 
parameterize and understand sea-ice motion in the Arctic. 
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Machine learning models are used to 
make one-day predictions of sea-ice 
dynamics.

Predictability Understanding sea-ice motion
As the ice melts 
it is becoming 
more responsive 
to wind forcing.
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Physical processes now included in state-of-the-art 
sea ice models such as CICE (Ed Hawkins, 2015).

Machine learning models for sea-ice drift have 
fewer complexities and a lower computational cost 
than traditional physics-based models.
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Physical processes now included in state-of-the-art 
sea ice models such as CICE (Ed Hawkins, 2015).

Machine learning models for sea-ice drift have 
fewer complexities and a lower computational cost 
than traditional physics-based models.

Machine Learning 
models can be 
used to understand 
sea-ice motion 
because they are 
drawing 
information from 
the data.

Hoffman et al. 2023, submitted



 Matthew Mazloff1, Patrick Heimbach2

[1] Scripps Institution of Oceanography, [2] University of Texas at Austin



The machine learning models make one-day 
predictions of sea-ice velocity given input data from 
satellite & reanalysis sources (1992-2017).  
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Present-day sea-ice velocity: 
ui, t = 1 & vi, t = 1

outputs

Present-day wind velocity1: 
ua, t = 1 & va, t = 1 

Previous-day sea-ice velocity2: 
ui, t = 0 & vi, t = 0

Previous-day sea-ice 
concentration3: ci, t = 0

machine 
learning
model

inputs

Model Inputs:  1JRA55; 2Polar Pathfinder; 3Nimbus-7 



model correlation 

Persistence 0.69 +/- 0.02

Linear Regression 0.77 +/- 0.02

CNN 0.80 +/- 0.01

A convolutional neural network (CNN) outperforms 
linear regression (LR) and persistence (PS) models.

increasing 
skill
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Models that incorporate non-linear relationships 
between inputs capture important information (i.e. 
corrCNN > corrLR). 

Predictability



Understanding sea-ice motion: LR

Machine learning methods confirm historical results 
that wind velocity has the largest relevance in 
determining sea-ice velocity.

ūi, t=1 = Aūw, t=1 + Būi, t=0 + Cct=0

wind velocity, A sea-ice velocity, B sea-ice concentration, C
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The CNN outperforms the LR primarily in the central 
Arctic where wind speed (A) is the dominant 
predictor of ice motion.
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Understanding sea-ice motion: XAI Hoffman et al. 2023, in prep
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wind velocity, A sea-ice velocity, B sea-ice concentration, C

Preliminary results from Explainable AI (XAI) show 
that wind velocity has the largest relevance in 
determining sea-ice velocity.



Machine learning confirms
historical results that wind velocity has the 
largest relevance in determining sea-ice velocity.

Machine learning models that 
incorporate non-linearities 
between inputs capture 
important information.

wind velocity, A sea-ice velocity, B sea-ice concentration, C

Machine learning is a useful tool to 
predict and understand 

sea-ice motion in the Arctic.

Normalized Linear Regression 
Parameter
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extras



wind velocity, A sea-ice velocity, B sea-ice concentration, C

Understanding sea-ice motion: XAI vs. LR Hoffman et al. 2023, in prep



Model performance vs. variability of inputs Hoffman et al. 2023, 
submitted


