Local winds drive interannual variability of the Gulf Stream North Wall Path Results from an adjoint sensitivity analysis (PL24B-2665)

Xiaohui Liu (Second Institute of Oceanography, Hangzhou, China) & Christopher L.P. Wolfe (Stony Brook University, Stony Brook, NY)

1. Gulf Stream North Wall

- The north edge of the Gulf Stream is marked by strong temperature front referred to as the North Wall.
- The North Wall **migrates meridionally** by up to 2° on interannual timescales.
- Changes in the position of the North Wall have significant impacts on local biology and climate, and has even been shown to influence biogeochemical cycles in European lakes and estuaries (e.g., Taylor 1995).

2. Data and Background

Gulf Stream Index

- The North Wall is typically colocated with the 15°C isotherm (Fig. 1); the position of the **15°C isotherm at 200 m depth** (T₂₀₀ = 15°C) serves as an operational definition of the North Wall position
- Joyce et al. (2000): the **Gulf Stream Index (GSI)** is the first PC of 200-m temperature at a sequence of points located along the mean path of the North Wall.
- The EOF is **single-signed**—representing **a coherent north-south shift** of the North Wall—and captures more than 50% of the variance on interannual time scales.

ECCOv4 Release 2

- ECCOv4r2 is a **dynamically consistent** estimate of the ocean state from 1992–2011 based on a wide range of remote and *in situ* observations (Forget et al. 2015)
- Comes with well-developed adjoint modeling system
- ECCOv4 has the **best representation of the Gulf Stream** of coarse-resolution ocean reanalyses (Chi et al. 2018)

自然资源和第二海泽研究开

Stony Brook University

School of Marine and

Atmospheric Sciences

Atmospheric forcing, the North Wall, and the North Atlantic Oscillation

- North Wall shifts are correlated with the North Atlantic Oscillation (NAO) with a lag of 0–2 years. Proposed mechanisms include
- Rossby waves excited by changes in wind stress curl (e.g., Marshall et al. 2001; Taylor and Gangopadyay 2001; Sasaki and Schneider 2011); however, the lag between the NAO and North Wall is short compared to the Rossby wave crossing time (4+ years)
- Advection in boundary currents of thermal or mechanical signals generated at high (Rossby 1999) or low latitude (Hameed et al. 2018)
- Here we use an adjoint sensitivity analysis to show that **most interannual variability is driven by winds** over and immediately east of the Gulf Stream extension.

3. Adjoint Sensitivity of the Gulf Stream Index

- GSI in ECCOv4r2:
- Explains >75% of the interannual variance of temperature at the points in figure 2a
- Is **significantly correlated** (r = 0.60) with the observed GSI—not an exact match, but captures the gross features of the index

Figure 2: (a) Mean temperature at 200 m in ECCOv4r2. Red circles indicate the 8 points used to calculate the GSI. (b) Loading pattern of the GSI.

4. Reconstructions

0.3

0.2

-0.1

-0.2

-0.3

0.8

0.6

• Actual response to forcing can be reconstructed from the sensitivities using a **convolution integral:** $J_{\text{rec}}(t, \tau_{\text{mem}}) = \sum_{k} \int_{t-\tau_{\text{mem}}}^{t} \int_{A} \frac{\partial J}{\partial F_{k}}(x', t-s) \, \delta F_{k}(x', s) \, dA \, ds$ • Complete variation of cost function can be reconstructed from sensitivities and forcing fields, if

• All **forcing fields** are used • All **memory** is used $(\tau_{\text{mem}} \rightarrow \infty)$

Upper panels: Seasonal cycle (left) and interannual variability (**right**) of the GSI and reconstructions using 5

 $\operatorname{var}\left[J(t) - J_{\operatorname{rec}}\left(t, \tau_{\operatorname{mem}}\right)\right]$

var[I(t)]

Figure 4: years of memory.

all possible effects all possible causes of of a given a change in your cost perturbation function

• The adjoint provides gradients of the cost function (i.e., sensitivities) with respect to control parameters • Here, the **cost function is the GSI** (temperature weighted by EOF in figure 2) and the controls are atmospheric forcing fields

2) Adjoint is **approximate** (some "nasty" physics are simplified) • Caveats: 1) Sensitivities are **linear**

- Seasonal cycle dominated by **buoyancy forcing** • Saturates after ~6 months of memory
 - Contribution of wind forcing sometimes **negative**
 - Accounting for wind sometimes **worse than persistence**!

- Interannual variability driven by (mostly zonal) winds • **Saturates** after ~4 years of memory (approx. Rossby wave crossing time) • First 2 years of memory make largest contribution
- Buoyancy forcing saturates in ~6 months of memory—**no effect** on subsequent years!

Contacts & Acknowledgements

Xiaohui Liu: <u>xh_liu@sio.org.cn</u> Christopher L.P. Wolfe: <u>christopher.wolfe@stonybrook.edu</u> This work was supported by the NNSF of China (41730535, 41621064), the Scientific Research Fund of SIO (JG1711), and the NSF (OCE-1634829).

• Local forcing dominates both seasonal cycle and interannual variability • Interannual variability: contributions of decreasing magnitude extending eastward Response to wind a **residual** between large **positive** and **negative** contributions • Residual is **small for seasonal cycle**

• Long memory of zonal wind perturbations due to **baroclinic Rossby waves**.

• Most of the signal arrives within 2 years → waves excited **near** Gulf Stream

• NAO has small, but statistically significant, loading in the region where 0–2 year lags are possible

• NAO-forcing in the eastern midlatitudes *could* propagate to the Gulf Stream, but project on regions with **opposite sensitivities** and the signal **attenuates** before reaching the Gulf Stream