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1 INTRODUCTION 2

1 Introduction16

Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) is a new-generation17

estimate of the global ocean and sea-ice state (Forget et al. 2015). The estimate constitutes18

a solution to an ocean general circulation model, constrained to most available ocean data19

(altimetry, floats, etc.) using advanced inverse techniques. The ocean model solution describes20

the full-depth, three-dimensional, time-evolving oceanic state, including its changing sea level,21

heat, and salt content, among other state variables. The new ECCOv4 Release 3 solution covers22

the 1992–2015 period. See Forget et al. (2015) for more details on the ECCOv4 framework.23

An important aspect is that, while constrained to data, the state estimate retains physical24

consistency. In other words, the solution exactly obeys conservation laws encoded in the model,25

and there are no nonphysical sources or sinks of volume, heat, salt, etc. This feature of the26

state estimate solution facilitates meaningful analysis of property budgets on the model grid,27

allowing changes in sea level, heat, salt content, etc., to be attributed unambiguously to the28

underlying causal mechanisms. For a recent example of budget studies using ECCOv4, see29

Thompson et al. (2016) for heat content in the Indian Ocean.30

1.1 Scope31

In what follows, we provide a basic outline, giving practical guidance for evaluating property32

budgets offline using available monthly ECCOv4 model diagnostic output. Importantly, note33

that methods described here are intended for analysis of model output on its native spatial grid34

(see sections 2 and A.1). Such methods are not appropriate for analysis of spatially interpolated35

model diagnostics, which are provided for convenience but not usable to evaluated budgets.36

We emphasize that the (continuous and discretized) forms of the conservation equations37

presented here reflect the particular model configuration choices employed in ECCOv4 and38

described below in section 3. Therefore, the methods given below may not be appropriate for39

closing budgets under different model configuration choices. For example, a separate memo40

(Heat Salt Budget MITgcm.pdf) discusses budgets for an earlier setup model setup (i.e., using41

different choices for the free surface condition and vertical coordinate).42

http://ecco-group.org/
http://mitgcm.org/download/daily_snapshot/MITgcm/doc/Heat_Salt_Budget_MITgcm.pdf
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2 Obtaining ECCOv4 Release 3 43

The ECCOv4 Release 3 solution can be downloaded from the ECCO Drive hosted by the Jet 44

Propulsion Laboratory Physical Oceanography Distributed Active Archive Center. These files 45

are also available from the Texas Advanced Computing Center of the University of Texas at 46

Austin. The solution is in the form of monthly diagnostics, including basic ocean state variables 47

(temperatures, salinities, velocities, etc.), surface forcing fields (e.g., wind stresses, heat fluxes), 48

as well as other quantities needed for more advanced calculations and applications (advection 49

and diffusion of temperature and salinity, bolus transport streamfunction, etc.). Specific model 50

diagnostics needed for closing budgets for heat, salt, volume, etc., can be downloaded from the 51

following two subdirectories— 52

• /nctiles monthly/ 53

• /nctiles monthly snapshots/ 54

Note that model diagnostics can have large file sizes. For example, the full monthly potential 55

temperature solution (THETA) is ∼ 10 GB. 56

Output diagnostics are provided in the form of NetCDF tiles, or nctiles. For a particular 57

state variable (e.g., salinity, temperature, velocity), there are 13 such nctiles, each holding 58

a horizontal “tile” of the full state estimate solution. The full solution is thus reconstituted 59

by concatenating the nctiles together. The rationale for using this form of diagnostics is 60

discussed in Appendix C of Forget et al. (2015). 61

3 Model Configuration 62

In the sections that follow, we introduce the conservation equations (budgets) used in ECCOv4, 63

and how these budgets can be evaluated using model output in the context of offline analyses. 64

However, the reader should note that the nature of the tracer conservation equations and surface 65

boundary conditions used in ocean models can be sensitive to the details of model configuration. 66

Thus, it is necessary first to discuss some details of the ECCOv4 model setup. Here we provide 67

a brief outline. More detailed discussion is found in Section 3 of Forget et al. (2015). 68

The ECCOv4 state estimates are solutions to the MIT general circulation model, or MITgcm 69

(Marshall et al. 1997). The particular configuration solves the primitive equations for the case 70

https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/
https://web.corral.tacc.utexas.edu/OceanProjects/ECCO/ECCOv4/Release3/
https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/nctiles_monthly/
https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/nctiles_monthly_snapshots/
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Parameter choice Explanation
implicitDiffusion=.TRUE., Implicit vertical diffusion
useRealFreshWaterFlux=.TRUE., Real surface freshwater exchange
select rStar=2, Choice of rescaled vertical coordinate
nonlinFreeSurf=4, Choice of nonlinear free surface
implicitFreeSurface=.TRUE., Implicit free surface
exactConserv=.TRUE., Exact conservation of global ocean volume
tempAdvScheme=30, Multidimensional temperature advection
saltAdvScheme=30, Multidimensional salt advection
tempVertAdvScheme=3, Third-order vertical temperature advection
saltVertAdvScheme=3, Third-order vertical salt advection
tempImplVertAdv=.TRUE., Implicit vertical temperature advection
saltImplVertAdv=.TRUE., Implicit vertical salt advection
staggerTimeStep=.TRUE., Staggered time step
vectorInvariantMomentum=.TRUE., Vector invariant momentum equations

Table 1: Model parameters (PARM01) in MITgcm configuration data file. See the MITgcm user
manual for more general details.

of a Boussinesq, hydrostatic ocean. The model uses a nonlinear free surface and real freshwater71

exchanges. The model also uses a staggered time step, a vector-invariant form of the momentum72

equations, third-order Adams-Bashforth time-stepping (for advection and Coriolis terms in the73

momentum budget), direct space time (multidimensional) scheme for tracer advection, implicit74

tracer vertical advection and diffusion, and third-order vertical tracer advection. Key parameter75

choices related to this model configuration are given in Table 1.76

The primitive equations are expressed in terms of a rescaled height coordinate,77

z∗ =
z − η (x, y, t)

H (x, y) + η (x, y, t)
H (x, y) . (1)

Here z is the unscaled vertical coordinate, η is surface height (at the air-sea or ice-sea interface),78

and H is ocean depth (Adcroft and Campin 2004). Note that the range of this rescaled height79

coordinate is z∗ ∈ [−H, 0]. That is, the upper surface boundary in z∗ is time invariant.80

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html
http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html
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Diagnostic Temporal Description (Units)
ETAN Snapshot Surface height anomaly (m)
oceFWflx Average Net surface freshwater flux into the ocean (kg m−2 s−1)
UVELMASS Average Zonal mass-weighted component of velocity (m s−1)
VVELMASS Average Meridional mass-weighted component of velocity (m s−1)
WVELMASS Average Vertical mass-weighted component of velocity (m s−1)

Table 2: MITgcm diagnostics required to evaluate the vertically integrated volume budget.

4 Budgets Evaluated for Extensive Quantities 81

4.1 Volume Conservation 82

The equation for volume conservation (continuity) in the z∗ reference frame is, in its continuous 83

form (see equation 3 in Forget et al. 2015), 84

1

H

∂η

∂t︸ ︷︷ ︸
Gη,tot

= −∇z∗ (s∗v)− ∂w

∂z∗︸ ︷︷ ︸
Gη,conv

+ s∗F︸︷︷︸
Gη,forc

, (2)

Here s∗ = 1 + η/H is a scale factor, ∇z∗ and ∂/∂z∗ are horizontal and vertical divergences in 85

the z∗ frame, respectively, v = (u, v) and w are the resolved horizontal and vertical velocities, 86

respectively, and F is proportional to the volumetric freshwater flux forcing. 87

Taking into account time stepping scheme (Table 1), the discretized version of equation (2) 88

diagnosed by the model and relating the updated state (ηn+1,vn+1, wn+1) at time t+ ∆t to the 89

current state (ηn,vn, wn) at time t is (see equation B4 in Forget et al. 2015), 90

1

H

ηn+1 − ηn

∆t
= −∇z∗

(
s∗nvn+1

)
− ∂wn+1

∂z∗
+ s∗nFn+1/2, (3)

where superscript denotes the time step corresponding to the particular variable. 91

Note that the forms of budgets (2) and (3) here for volume (and below for heat and salt) are 92

that of total tendency (Gη,tot) on the left hand side (LHS) being balanced by the sum of ocean 93

transport convergences (Gη,conv) and sea surface forcing (Gη,forc) on the right hand side (RHS). 94

In the context of offline analysis, given a particular time period of interest, LHS tendency terms 95

are evaluated based on temporal snapshot (or instantaneous) model output corresponding to the 96

beginning and end of that time period, while RHS convergence and forcing terms are assessed 97

using temporal average model output taken over the time interval. 98
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Figure 1: Volume budget for an arbitrary surface grid cell. Top panel shows the individual
terms in the budget equation (2). Bottom panel shows the LHS, RHS, and difference between
LHS and RHS terms in the budget. The good agreement between RHS and LHS (e.g., the
ratio of the standard deviation of the residual to the standard deviation of the tendency here
is O (10−3)) demonstrates practical closure of the budget.

Table 2 lists the MITgcm diagnostics needed to evaluate the volume budget in offline analysis,99

while Algorithm (1) provides example pseudocode for closing the budget. (We give more specific100

Matlab code for evaluation of the volume budget in the Appendix.) An example volume budget101

for an arbitrary grid cell based on output in Table 2 is shown in Figure 1.102

Note that there is very good agreement between the independently evaluated LHS tendency103

term and the sum of RHS convergence and forcing terms in Figure 1. More quantitatively,104

averaged over the global ocean surface in the first vertical layer (k = 1), the ratio of the105

standard deviation of the residual (LHS−RHS) to the tendency (LHS) in equation (2) using106

methods presented here is O (10−2). [Note that budget closure checks are routinely carried out107

as part of the “standard analysis” described in the supplement to Forget et al. (2015).] Similar108

results are seen for the cases of example heat and salt budgets shown below in Figures 2 and 3.109

This shows that, provided they are evaluated correctly, the RHS fluxes computed from monthly110

averages should match the LHS tendency calculated from instantaneous snapshots. (Indeed,111

the instantaneous snapshots are made available precisely to facilitate such offline consistency112

checks.)113



4 BUDGETS EVALUATED FOR EXTENSIVE QUANTITIES 7

Algorithm 1 : Evaluating the volume budget. Subscripts i, j, k denote spatial positions in
x, y, z, respectively (except for the Kronecker delta δa,b). The other terms are grid parameters:
H is water column depth (Depth), h is grid cell relative thickness (hFacC), ∆x is horizontal
thickness of grid cell southern edge (DXG), ∆y is horizontal thickness of grid cell western edge
(DYG), and ∆z is grid cell vertical thickness (DRF). For more general details on grid parameters,
see MITgcm user manual Chapter 2. NetCDF files of grid parameters for ECCOv4 can be
downloaded from the ECCO Drive.

1. 1: for t = t1, t2, . . . tT−1, tT do . Loop over T time steps (months) t

2: Fi,j = oceFWflx {t} . 2-D average freshwater flux over month t

3: Ui,j,k = UVELMASS {t} . 3-D average zonal velocity over month t

4: Vi,j,k = VVELMASS {t} . 3-D average meridional velocity over month t

5: Wi,j,k = WVELMASS {t} . 3-D average vertical velocity over month t

6: N
(0)
i,j = ETAN {t−∆t} . 2-D surface height snapshot at start of month t

7: N
(f)
i,j = ETAN {t} . 2-D surface height snapshot at end of month t

8: ρ0 = 1029 . Reference density (kg m−3)

9: for i = i1, i2, . . . iI−1, iI do . Loop over I longitude cells i

10: for j = j1, j2, . . . jJ−1, jJ do . Loop over J latitude cells j

11: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

12: Gη,tot
i,j,k =

(
N

(f)
i,j −N

(0)
i,j

)
/ (Hi,j∆t)

13: Gη,forc
i,j,k = δk,1Fi,j/ (ρ0hi,j,k∆zk)

14: Gη,convH
i,j,k = [(Ui,j,k∆yi,j − Ui+1,j,k∆yi+1,j) + (Vi,j,k∆xi,j − Vi,j+1,k∆xi,j+1)] / (Ai,jhi,j,k)

15: Gη,convV
i,j,k = [(1− δk,K)Wi,j,k+1 − (1− δk,1)Wi,j,k] / (hi,j,k∆zk)

16: Gη,conv
i,j,k = Gη,convH

i,j,k +Gη,convV
i,j,k

17: end for

18: end for

19: end for

20: end for

4.2 Heat Conservation 114

The heat conservation equation in z∗ is (see equation 4 in Forget et al. 2015), 115

∂ (s∗θ)

∂t︸ ︷︷ ︸
Gθ,tot

= −∇z∗ (s∗θvres)−
∂ (θwres)

∂z∗︸ ︷︷ ︸
Gθ,adv

+ s∗Fθ︸︷︷︸
Gθ,forc

+ s∗Dθ︸︷︷︸
Gθ,diff

. (4)

Here θ is potential temperature, vres = (ures, vres) and wres are the total horizontal and vertical 116

velocities, respectively, Fθ is total local forcing by surface heat exchanges, and Dθ symbolizes 117

http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html
https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/nctiles_grid/
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parameterized diffusive mixing processes. Total velocities vres and wres are sometimes called118

“residual mean” velocities. They contain both the resolved (Eulerian) flow field, as well as the119

“bolus” velocity, parameterizing unresolved eddy effects after Gent and McWilliams (1990).120

The diffusion term Dθ contains both diapycnal and isopycnal components, as well as turbulence121

in the mixed layer (Gaspar et al. 1990) and convection. Forcing Fθ contains the latent, sensible,122

longwave, and shortwave components. Importantly, the shortwave radiative heat flux penetrates123

the water column vertically (see below).124

Given the model time stepping, the discrete version of equation (4) relating the updated125

state (ηn+1,vn+1, wn+1, θn+3/2) at time t+ ∆t to the current state (ηn,vn, wn, θn+1/2) at time t126

is (see equation B5 in Forget et al. 2015),127

s∗n+1θn+3/2 − s∗nθn+1/2

∆t
= A

(
θ,un+1 + un+1

b

)
+ s∗n

(
Fn+1
θ +D

n+1/2
σ,θ +D

n+3/2
⊥,θ

)
. (5)

Here A () symbolizes the advection term, u = (u, v, w) the full three-dimensional velocity, ub128

the bolus velocity, and subscripts σ and ⊥ are the isopycnal and diapycnal components of the129

diffusion term Dθ, respectively.130

Table 3 lists MITgcm diagnostics needed for evaluating monthly heat budgets with ECCOv4.131

Given the nature of the surface forcing term, we demonstrate evaluation of the heat budget in132

two parts. First, we deal with the total tendency term and ocean transport convergences. The133

operations sketched in Algorithm (2) for the tendency and transport terms in the heat budget134

are very similar to those given in Algorithm (1) for the analogous terms in the volume budget.135

(Note that we provide specific Matlab code for evaluation of the heat budget in the Appendix.)136

Second, we tackle local surface heat flux forcing. To follow the relevant pseudocode outlined137

in Algorithm (3), one needs to understand how the MITgcm setup represents the local surface138

forcing term. In ECCOv4, shortwave radiation penetrates the water column vertically over the139

top 200 m as exponentially decaying Jerlov Type IA-2 water (Paulson and Simpson 1977),140

Qsw(z) = Qsw(0)
q1 − q2

∆z
. (6)

Here Qsw(z) is the shortwave radiation penetrating to depth z, ∆z is the vertical thickness of141
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Algorithm 2 : Evaluating the tendency and transport terms in the heat budget. See
Algorithm (1) caption for description of subscript indices, grid parameters, and other symbols.
Readers interested in the details of these calculations as performed by the model are referred
to the MITgcm subroutines gad calc rhs.F and impldiff.F.

1. 1: for t = t1, t2, . . . tT−1, tT do . Loop over T time steps (months) t

2: Ui,j,k = ADVx TH {t} . 3-D average zonal advection over month t

3: Vi,j,k = ADVy TH {t} . 3-D average meridional advection over month t

4: Wi,j,k = ADVr TH {t} . 3-D average vertical advection over month t

5: Ui,j,k = DFxE TH {t} . 3-D average zonal diffusion over month t

6: Vi,j,k = DFyE TH {t} . 3-D average meridional diffusion over month t

7: WE
i,j,k = DFyE TH {t} . 3-D average vertical diffusion (explicit) over month t

8: WI
i,j,k = DFyI TH {t} . 3-D average vertical diffusion (implicit) over month t

9: N
(0)
i,j = ETAN {t−∆t} . 2-D surface height snapshot at start of month t

10: N
(f)
i,j = ETAN {t} . 2-D surface height snapshot at end of month t

11: T
(0)
i,j,k = THETA {t−∆t} . 3-D temperature snapshot at start of month t

12: T
(f)
i,j,k = THETA {t} . 3-D temperature snapshot at end of month t

13: vi,j,k = hi,j,kAi,j∆zk . Grid volume

14: for i = i1, i2, . . . iI−1, iI do . Loop over I longitude cells i

15: for j = j1, j2, . . . jJ−1, jJ do . Loop over J latitude cells j

16: s
∗(0)
i,j =

(
1 +N

(0)
i,j /Hi,j

)
17: s

∗(f)
i,j =

(
1 +N

(f)
i,j /Hi,j

)
18: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

19: Gθ,tot
i,j,k =

(
T

(f)
i,j,ks

∗(f)
i,j − T

(0)
i,j,ks

∗(0)
i,j

)
/∆t

20: Gθ,advH
i,j,k = (Ui,j,k − Ui+1,j,k + Vi,j,k − Vi,j+1,k) /vi,j,k

21: Gθ,diffH
i,j,k = (Ui,j,k − Ui+1,j,k + Vi,j,k − Vi,j+1,k) /vi,j,k

22: Gθ,advV
i,j,k = [(1− δk,K)Wi,j,k+1 −Wi,j,k] /vi,j,k

23: Gθ,diffV
i,j,k =

[
(1− δk,K)

(
WE

i,j,k+1 +WI
i,j,k+1

)
−WE

i,j,k −WI
i,j,k

]
/vi,j,k

24: Gθ,adv
i,j,k = Gθ,advH

i,j,k +Gθ,advV
i,j,k

25: Gθ,diff
i,j,k = Gθ,diffH

i,j,k +Gθ,diffV
i,j,k

26: end for

27: end for

28: end for

29: end for
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Diagnostic Time Description (Units)
ETAN Snapshot Surface height anomaly (m)
THETA Snapshot Potential temperature (◦C)
TFLUX Average Total heat flux (W m−2)
oceQsw Average Net shortwave radiation (W m−2)
ADVr TH Average Vertical advective flux of pot. temp. (◦C m3 s−1)
ADVx TH Average Zonal advective flux of pot. temp. (◦C m3 s−1)
ADVy TH Average Meridional advective flux of pot. temp. (◦C m3 s−1)
DFrI TH Average Implicit vertical diffusive flux of pot. temp. (◦C m3 s−1)
DFrE TH Average Explicit vertical diffusive flux of pot. temp. (◦C m3 s−1)
DFxE TH Average Explicit zonal diffusive flux of pot. temp. (◦C m3 s−1)
DFyE TH Average Explicit meridional diffusive flux of pot. temp. (◦C m3 s−1)

Table 3: MITgcm diagnostics required to evaluate the grid cell heat budget. In addition, to
evaluate the globally averaged or deep ocean heat budget, the user needs the geothermal flux
forcing file, as described below in section 4.2.1.

the grid cell centered on z, and q1 and q2 are functions of depth given by,142

qi = 0.62 exp
( zi

0.6

)
+ (1− 0.62) exp

( zi
20

)
, i ∈ {1, 2} , zi < 0 (7)

where z1 (z2) is the depth of the “top” (“bottom”) of the vertical grid cell. Thus, to properly143

evaluate the forcing term, the shortwave contribution (the oceQsw diagnostic) must be removed144

from the total flux (the TFLUX diagnostic) and redistributed in the vertical following equations145

(6) and (7).146

Figure 2 shows an example heat budget at an arbitrary grid cell using output in Table 3.147

Averaged over the global ocean surface in the first vertical layer (k = 1), the ratio of the148

standard deviation of the residual (LHS−RHS) to the tendency (LHS) in equation (4) using149

methods presented here is O (10−5).150

4.2.1 Geothermal Flux151

A final detail with respect to the heat budget is that, for grid cells on the seafloor, Fθ contains152

a contribution from geothermal flux (Piecuch et al. 2015). This detail is of particular relevance153

to readers interested in globally integrated or abyssal ocean heat budgets. This geothermal flux154

contribution is not accounted for in any of the standard model diagnostics provided as output.155

Rather, this term, which is time invariant, is provided in the input file geothermalFlux.bin156

(and downloadable from the ECCO directory listing).157

https://ecco.jpl.nasa.gov/drive/files/Version4/Release3/input_init/
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Algorithm 3 : Evaluating the forcing term in the heat budget. See Algorithm (1)
caption for description of subscript indices, grid parameters, and other symbols. Readers more
interested in the details of these calculations as performed by the model are referred to the
MITgcm subroutines external forcing.F and swfrac.F.

1. 1: for t = t1, t2, . . . tT−1, tT do . Loop over T time steps (months) t

2: Qi,j = TFLUX {t} . 2-D average total heat flux over month t

3: Si,j = oceQsw {t} . 2-D average shortwave radiation over month t

4: ρ0 = 1029 . Reference density (kg m−3)

5: cp = 3994 . Heat capacity (J kg−1 ◦C−1)

6: R = 0.62 . Constant (cf. Paulson and Simpson 1977 Table 2)

7: ζ1 = 0.6 . Constant (cf. Paulson and Simpson 1977 Table 2)

8: ζ2 = 20 . Constant (cf. Paulson and Simpson 1977 Table 2)

9: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

10: if 0 > zk > −200 then . If above 200 m depth

11: q1,k = R exp (z1,k/ζ1) + (1−R) exp (z1,k/ζ2)

12: q2,k = R exp (z2,k/ζ1) + (1−R) exp (z2,k/ζ2)

13: else

14: q1,k = 0

15: q2,k = 0

16: end if

17: end for

18: for i = i1, i2, . . . iI−1, iI do . Loop over I longitude cells i

19: for j = j1, j2, . . . jJ−1, jJ do . Loop over J latitude cells j

20: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

21: if k = 1 then

22: Gθ,forc
i,j,k = 〈Qi,j − [1− (q1,k − q2,k)]Si,j〉/ (ρ0cphi,j,k∆zk)

23: else

24: Gθ,forc
i,j,k = [(q1,k − q2,k)Si,j] / (ρ0cphi,j,k∆zk)

25: end if

26: end for

27: end for

28: end for

29: end for
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Figure 2: Heat budget for an arbitrary surface grid cell. Top panel shows the individual terms
in the budget equation (4). Bottom panel shows the LHS, RHS, and difference between LHS
and RHS terms in the budget. The good agreement between RHS and LHS (e.g., the ratio
of the standard deviation of the residual to the standard deviation of the tendency here is
O (5× 10−6)) demonstrates practical closure of the budget.

To demonstrate the relevance of this term in the global ocean heat budget, the horizontally158

averaged value of the geothermal heating is 0.095 W m−2. This is not negligible relative to the159

average heating of the ocean in the ECCOv4 Release 3 solution over 1992–2015 (0.237 W m−2).160

To incorporate the geothermal contribution into the heat budget, one simply considers the161

ocean bottom grid cells, and normalizes the heat flux by reference density, specific heat capacity,162

and the vertical thickness of the bottom grid cell, as sketched in Algorithm (4).163

4.3 Salt Conservation164

The salt conservation equation in z∗ is (see equation 5 in Forget et al. 2015),165

∂ (s∗S)

∂t︸ ︷︷ ︸
GS,tot

= −∇z∗ (s∗Svres)−
∂ (Swres)

∂z∗︸ ︷︷ ︸
GS,adv

+ s∗FS︸ ︷︷ ︸
GS,forc

+ s∗DS︸ ︷︷ ︸
GS,diff

, (8)

where S is salinity, and, in analogy with the heat budget equation (4), FS and DS are surface166

forcing and diffusive mixing of salt.167
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Algorithm 4 : Including geothermal flux in the heat budget. See Algorithm (1) caption
for description of subscript indices, grid parameters, and other symbols.

1. 1: Qgeo
i,j = geothermalFlux.bin . 2-D time-invariant geothermal flux

2: for t = t1, t2, . . . tT−1, tT do . Loop over T time steps (months) t

3: for i = i1, i2, . . . iI−1, iI do . Loop over I longitude cells i

4: for j = j1, j2, . . . jJ−1, jJ do . Loop over J latitude cells j

5: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

6: if k = kboti,j then . Do iff k is bottom cell at horizontal position (i, j)

7: Gθ,forc
i,j,k = Qgeo

i,j / (ρ0cphi,j,k∆zk)

8: end if

9: end for

10: end for

11: end for

12: end for

Given the time stepping, and again similar to the case of temperature, the discretized 168

version of equation (8) relating the updated and current states (ηn+1,vn+1, wn+1, Sn+3/2) and 169

(ηn,vn, wn, Sn+1/2) is (see equation B6 in Forget et al. 2015), 170

s∗n+1Sn+3/2 − s∗nSn+1/2

∆t
= A

(
S,un+1 + un+1

b

)
+ s∗n

(
Fn+1
S +D

n+1/2
σ,S +D

n+3/2
⊥,S

)
. (9)

Table 4 lists MITgcm diagnostics needed for evaluating monthly salt budgets with ECCOv4. 171

Evaluation of the total tendency and transport convergences in the salt budget (8) and (9) is 172

performed in exactly the same manner as with the temperature budget (4) and (5). Therefore, 173

we do not provide a separate pseudocode algorithm, but rather refer the reader to Algorithm (2), 174

with appropriate replacements made between model diagnostics in Table 3 and those in Table 4 175

(e.g., SALT snapshots in place of THETA snapshots, and advection and diffusion diagnostics with 176

suffix SLT instead of TH). 177

The local forcing term GS,forc reflects surface salt exchanges. As shown in Table 4, there 178

are two relevant model diagnostics here, namely the total salt exchange at the surface (SFLUX), 179

which is nonzero only when sea ice melts or freezes, and the salt plume tendency (oceSPtnd), 180

which vertically redistributes surface salt input by sea ice formation following Duffy et al. 181

(1999). A pseudocode sketch of an evaluation of the salt forcing term is given in Algorithm (5). 182
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Figure 3: Salt budget for an arbitrary surface grid cell. Top panel shows the individual terms
in the budget equation (8). Bottom panel shows the LHS, RHS, and difference between LHS
and RHS terms in the budget. The good agreement between RHS and LHS (e.g., the ratio
of the standard deviation of the residual to the standard deviation of the tendency here is
O (2× 10−5)) demonstrates practical closure of the budget.

(As before, we give specific Matlab code for evaluation of all terms in the salt budget in the183

Appendix.)184

Figure 3 shows an example salt budget at an arbitrary grid cell using output in Table 4.185

Averaged over the global ocean surface in the first vertical layer (k = 1), the ratio of the186

standard deviation of the residual (LHS−RHS) to the tendency (LHS) in equation (8) using187

methods presented here is O (10−4).188

An important point here is that, given the nonlinear free surface condition, budgets for189

salt content (an extensive quantity) are not the same as budgets for salinity (an intensive190

quantity). The attentive reader will have noticed that surface freshwater exchanges do not191

enter into salt budget equations, since such fluxes do not affect the overall salt content, but192

rather make it more or less concentrated. However, a budget for salinity can be derived based193

on the conservation equations for salt (8) and volume (2), and estimated using diagnostic model194

output. Such details are given in immediately below.195
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Diagnostic Time Description (Units)
ETAN Snapshot Surface height anomaly (m)
SALT Snapshot Salinity (psu)
SFLUX Average Total salt flux (g m−2 s−1)
oceSPtnd Average Salt tendency due to salt plume flux (g m−2 s−1)
ADVr SLT Average Vertical advective flux of salinity (psu m3 s−1)
ADVx SLT Average Zonal advective flux of salinity (psu m3 s−1)
ADVy SLT Average Meridional advective flux of salinity (psu m3 s−1)
DFrI SLT Average Implicit vertical diffusive flux of salinity (psu m3 s−1)
DFrE SLT Average Explicit vertical diffusive flux of salinity (psu m3 s−1)
DFxE SLT Average Explicit zonal diffusive flux of salinity (psu m3 s−1)
DFyE SLT Average Explicit meridional diffusive flux of salinity (psu m3 s−1)

Table 4: MITgcm diagnostics required to evaluate the grid cell salt budget.

Algorithm 5 : Evaluating the forcing term in the salt budget. See Algorithm (1)
caption for description of subscript indices, grid parameters, and other symbols.

1. 1: for t = t1, t2, . . . tT−1, tT do . Loop over T time steps (months) t

2: Qi,j = SFLUX {t} . 2-D average total surface salt flux over month t

3: Pi,j,k = oceSPtnd {t} . 3-D average salt plume tendency over month t

4: ρ0 = 1029 . Reference density (kg m−3)

5: for i = i1, i2, . . . iI−1, iI do . Loop over I longitude cells i

6: for j = j1, j2, . . . jJ−1, jJ do . Loop over J latitude cells j

7: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

8: GS,forc
i,j,k = 0

9: if k=1 then

10: GS,forc
i,j,k = GS,forc

i,j,k +Qi,j/ (ρ0hi,j,k∆zk)

11: end if

12: GS,forc
i,j,k = GS,forc

i,j,k + Pi,j,k/ (ρ0hi,j,k∆zk)

13: end for

14: end for

15: end for

16: end for
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5 Budgets Estimated for Intensive Quantities196

Above, we walked through the model conservation equations for the extensive quantities volume,197

heat, and salt content, and demonstrated their offline evaluation. However, oftentimes interest is198

in an intensive quantity, such as salinity or density. As examples, below we derive a conservation199

equation for salinity in the rescaled height coordinate, and demonstrate how to estimate this200

budget offline using output from the ECCOv4 solution.201

Yet, it is important to note at the outset that the budget derived and presented below does202

not correspond to a conservation equation diagnosed online by the model. As a result, there203

are some nonlinear product terms that appear in the equation that do not have corresponding204

available model diagnostics. Therefore, unlike with evaluation of the extensive property budgets205

above, small residual errors can be incurred in the offline estimation of the intensive property206

budget below.207

5.1 Salinity Budget208

Here we derive the salinity budget in the z∗ coordinate, give a pseudocode sketch of evaluation209

of the budget using monthly model output. (Concrete Matlab code is given in the Appendix.)210

We partition the LHS tendency in the salt conservation equation (8) using the product rule,211

∂ (s∗S)

∂t
= s∗

∂S

∂t
+ S

∂s∗

∂t
. (10)

Substituting the sum of terms on the RHS of equation (10) for the LHS term in equation (8)212

and solving for ∂S/∂t gives an expression for the salinity tendency,213

∂S

∂t
= − 1

s∗

[
S
∂s∗

∂t
+∇z∗ (s∗Svres) +

∂ (Swres)

∂z∗

]
+ FS +DS. (11)

Noting that ∂s∗/∂t ≡ H−1∂η/∂t, we use the continuity equation (2) to cast equation (11) as,214

∂S

∂t︸︷︷︸
G†,tot

=
1

s∗

[
S∇z∗ (s∗v) + S

∂w

∂z∗
−∇z∗ (s∗Svres)−

∂ (Swres)

∂z∗

]
︸ ︷︷ ︸

G†,adv

+FS − SF︸ ︷︷ ︸
G†,forc

+ DS︸︷︷︸
G†,diff

. (12)

Notice here that, in contrast to the salt content conservation equation (8), the surface forcing215
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term in the salinity equation (12) comprises both surface salt fluxes as well as surface freshwater 216

fluxes (converted to appropriate units through multiplication by salinity). 217

Estimation of the salinity budget involves diagnostics given in Tables 2 and 4, with the 218

addition of the monthly means of salinity (SALT) and surface height (ETAN). Budget evaluation 219

roughly follows on from the basic steps outlined in Algorithms (1), (2), and (5), as sketched in 220

Algorithm (6). Figure 4 shows an example salinity budget at an arbitrary sea surface grid cell. 221

(Example Matlab code appears in the Appendix.) Averaged over the global ocean surface in 222

the first vertical layer (k = 1), the ratio of the standard deviation of the residual (LHS−RHS) 223

to the tendency (LHS) in equation (12) using methods presented here is O (10−3). 224

Algorithm 6 : Evaluating the salinity budget. See Algorithm (1) caption for description of
subscript indices, grid parameters, and other symbols. This algorithm assumes that operations
performed in Algorithm (1) for the volume budget and Algorithms (2) and (5) in the salt budget
are still valid here (and are not repeated to save space).

1. 1: for t = t1, t2, . . . tT−1, tT do . Loop over T time steps (months) t

2: Si,j,k = SALT {t} . 3-D average salinity over month t

3: Ni,j = ETAN {t} . 2-D average surface height over month t

4: for i = i1, i2, . . . iI−1, iI do . Loop over I longitude cells i

5: for j = j1, j2, . . . jJ−1, jJ do . Loop over J latitude cells j

6: s∗i,j = (1 +Ni,j/Hi,j)

7: for k = k1, k2, . . . kK−1, kK do . Loop over K vertical cells k

8: G†,toti,j,k =
(
S
(f)
i,j,k − S

(0)
i,j,k

)
/∆t

9: G†,advi,j,k =
(
GS,adv
i,j,k − Si,j,kG

η,conv
i,j,k

)
/s∗i,j

10: G†,diffi,j,k =
(
GS,forc
i,j,k − Si,j,kGη,forc

i,j,k

)
/s∗i,j

11: G†,forci,j,k = GS,diff
i,j,k /s∗i,j

12: end for

13: end for

14: end for

15: end for
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Figure 4: Salinity budget for an arbitrary surface grid cell. Top panel shows the individual
terms in the budget equation (12). Bottom panel shows the LHS, RHS, and difference between
LHS and RHS terms in the budget. The good agreement between RHS and LHS (e.g., the
ratio of the standard deviation of the residual to the standard deviation of the tendency here
is O (10−4)) demonstrates practical closure of the budget.

A Example Matlab Code and the gcmfaces Framework225

A.1 The gcmfaces Framework226

The ECCOv4 estimates are provided on a native longitude-latitude-cap (LLC) grid topology.227

To allow for easy manipulation of the ECCOv4 output on the LLC grid and MITgcm output228

on all other grids, Gaël Forget at MIT has produced a suitable Matlab class and framework,229

called gcmfaces.230

A current version of gcmfaces suitable for use with ECCOv4 can be found here. If they231

have not already done so, we recommend that the user download and read the gcmfaces.pdf232

document, which describes getting started with gcmfaces, including how to download, initialize,233

and update.234

https://github.com/gaelforget/gcmfaces
https://github.com/gaelforget/gcmfaces/blob/master/gcmfaces.pdf
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A.2 Example Matlab code 235

Here we provide example Matlab code for evaluating budgets, explaining our steps along the 236

way, and relating to the conservation equations given above. 237

We assume the working directory is /myDirectory/. Within /myDirectory/, we assume 238

the user has downloaded and initialized gcmfaces (as described in gcmfaces.pdf), and that the 239

user has downloaded the relevant model diagnostics and stored them respectively in subdirecto- 240

ries /nctiles monthly/ and /nctiles monthly snapshots/. (See Tables 2, 3, and 4 above for 241

the diagnostics.) Also, the user should have downloaded the ECCOv4 grid files, which are found 242

here, and stored them in a subdirectory called /nctiles grid/ within /myDirectory/gcmfaces/. 243

Further, we assume that the subdirectories /budget volume/, /budget heat/, /budget salt/, 244

and /budget salinity/ exist (and are empty) within /myDirectory/. Lastly, we assume that 245

the reader has downloaded the geothermalFlux.bin from the ECCO directory listing, and 246

placed this file in the subdirectory /myDirectory/input init/. 247

1. The user begins by instantiating the gcmfaces framework and loading the ECCOv4 grid 248

parameters, contained in the global mygrid structure (Box 1). 249

1 %%%%%%%%%%

2 % i n i t i a l i z e workspace

3 c l e a r a l l , c l o s e a l l , c l c

4 cd / myDirectory / gcmfaces /

5 %%%%%%%%%%

6

7 %%%%%%%%%%

8 % i n s t a n t i a t e gcmfaces and load g r id

9 gcmface s g l oba l

10 g l o b a l mygrid ; mygrid = [ ] ;

11 g r i d l o a d ;

12 %%%%%%%%%%

250

Box 1. Instantiation of gcmfaces and loading of model grid. 251

2. Next, for computing property tendencies from snapshot output, it can be helpful to define 252

a number of parameters related to the time steps of the model output. ECCOv4 Release 3 253

http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/
http://wwwcvs.mitgcm.org/viewvc/MITgcm/MITgcm_contrib/gael/matlab_class/gcmfaces.pdf?revision=1.12&view=co
ftp://ecco.jpl.nasa.gov/Version4/Release3/nctiles_grid/
ftp://ecco.jpl.nasa.gov/Version4/Release3/input_init/
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is provided for the nn = 288 months over the period 1992-01-01 12:00:00 through 2015-12-31254

12:00:00. The convention here is to define the time of a particular month of output (tt) as the255

end of the corresponding averaging period (in hr from the initial time). So, the first difference256

of the time (dt) is the number of hours in every month (Box 2). For example, for January 1994,257

the first difference of the time is dt = 744 hr.258

1 %%%%%%%%%%

2 % d e f i n e monthly t imes over

3 % 1992−01−01 12 : 0 0 : 0 0 to 2015−12−31 12 : 0 0 : 0 0

4 nn=288;

5 t t =[1992∗ ones (nn , 1 ) [ 2 : ( nn+1) ] ’ [ 1∗ ones (nn−1 ,1) ; 0 . 5 ] ] ;

6 t t =24∗(datenum ( t t )−datenum ( [1992 1 1 12 0 0 ] ) ) ;

7 dt=d i f f ( [ 0 tt ’ ] ) ;

8 t tUn i t s=’ hours s i n c e 1992−1−1 12 : 00 : 00 ’ ;

9 secPerHour =3600;

10 %%%%%%%%%%

259

Box 2. Definition of time parameters.260

3. In addition to parameters related to time, it is also helpful for the user to define several261

quantities related to the grid’s spatial geometry. In Box 3, after defining strings for the direc-262

tories housing the nctiles output, we define several three-dimensional gcmfaces-class objects263

related to the depth (dzMat, dzMatF), surface area (RACMat), and volume (VVV) of each model264

spatial grid cell. These objects are used in subsequent computations of spatial integrals and265

averages. The nLevels variable, which is the number of vertical levels on the grid (here 50), is266

used in evaluations of the vertically penetrating shortwave radiation forcing in the heat budget.267

Additionally, we load in the geothermal flux forcing file and convert to a gcmfaces object.268
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1 %%%%%%%%%%

2 % d e f i n e d i r e c t o r i e s and other u s e f u l f i e l d s

3 d i r1=’ / myDirectory / n c t i l e s m on th l y / ’ ;

4 d i r2=’ / myDirectory / n c t i l e s m o n t h l y s n a p s h o t s / ’ ;

5 d i r3=’ / myDirectory / i n p u t i n i t / ’ ;

6 dzMatF=mk3D( mygrid .DRF, mygrid . hFacC) ;

7 dzMat=dzMatF .∗mygrid . hFacC ;

8 RACMat=mk3D( mygrid .RAC, mygrid . hFacC) ;

9 VVV=mygrid . mskC.∗RACMat.∗ dzMat ;

10 nLeve ls=numel ( mygrid .RC) ;

11 %%%%%%%%%%

12

13 %%%%%%%%%%

14 % load 2d geothermal f l u x and make 3d

15

16 % load , reshape , and make gcmfaces

17 f i d=fopen ( [ d ir3 , ’ geothermalFlux . bin ’ ] , ’ r ’ , ’ b ’ ) ;

18 geo f l x2d=f r ead ( f id , ’ f l o a t 3 2 ’ ) ; f c l o s e ( f i d ) ;

19 geo f l x2d=reshape ( geo f lx2d ,90 , 1170) ;

20 geo f l x2d=convert2gcmfaces ( geo f l x2d ) ;

21

22 % c r e a t e 3d ve r s i o n

23 mskc=mygrid . mskC ;

24 mskc ( i snan ( mskc ) ) =0;

25 mskcp1=mskc ;

26 mskcp1 ( : , : , nLeve l s +1)=0;

27 mskcp1 ( : , : , 1 ) = [ ] ;

28 mskb=mskc−mskcp1 ;

29 geo f l x3d=mk3D( geof lx2d , mskc ) .∗mskb .∗mygrid . mskC ;

30 c l e a r mskc mskcp1 mskb geo f l x2d

31 %%%%%%%%%%

269

Box 3. Definition of directories and space parameters. 270

4. ECCOv4 Release 3 file sizes can be large. To make it more feasible to load multiple state 271

variables needed for budget calculations, we loop over the time steps, evaluating one month of 272

output at a time (Box 4). 273
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1 %%%%%%%%%%

2 % loop through time s t ep s

3 f o r i i =1:nn , d i sp ( num2str ( i i ) )

274

Box 4. Begin loop over nn time steps (i.e., months of output).275

5. For each ii, we use the read nctiles.m function provided with gcmfaces to concatenate276

the nctiles and load into the Matlab workspace the monthly average diagnostic output needed277

for computing RHS transport-convergence and surface-forcing terms in the budgets of volume278

(Box 5), . . .279

1 %%%%%%%%%%

2 % load 2−d monthly s u r f a c e he ight and volume f o r c i n g

3 oceFWflx=r e a d n c t i l e s ( [ d i r1 , ’ oceFWflx ’ ] , ’ oceFWflx ’ , i i ) ;

4 ETAN=r e a d n c t i l e s ( [ d i r1 , ’ETAN’ ] , ’ETAN’ , i i ) ;

5

6 %%%%%%%%%%

7 % load 3−d monthly volume−r e l a t e d f i e l d s

8 UVELMASS=r e a d n c t i l e s ( [ d i r1 , ’UVELMASS’ ] , ’UVELMASS’ , i i ) ;

9 VVELMASS=r e a d n c t i l e s ( [ d i r1 , ’VVELMASS’ ] , ’VVELMASS’ , i i ) ;

10 WVELMASS=r e a d n c t i l e s ( [ d i r1 , ’WVELMASS’ ] , ’WVELMASS’ , i i ) ;

280

Box 5. Loading monthly averaged variables for volume budget.281

6. . . . heat (Box 6), . . .282
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1 %%%%%%%%%%

2 % load 2−d monthly s u r f a c e heat f o r c i n g

3 TFLUX=r e a d n c t i l e s ( [ d i r1 , ’TFLUX’ ] , ’TFLUX’ , i i ) ;

4 oceQsw=r e a d n c t i l e s ( [ d i r1 , ’ oceQsw ’ ] , ’ oceQsw ’ , i i ) ;

5

6 %%%%%%%%%%

7 % load 3−d monthly heat−r e l a t e d f i e l d s

8 ADVr TH=r e a d n c t i l e s ( [ d i r1 , ’ADVr TH ’ ] , ’ADVr TH ’ , i i ) ;

9 ADVx TH=r e a d n c t i l e s ( [ d i r1 , ’ADVx TH ’ ] , ’ADVx TH ’ , i i ) ;

10 ADVy TH=r e a d n c t i l e s ( [ d i r1 , ’ADVy TH ’ ] , ’ADVy TH ’ , i i ) ;

11 DFrI TH=r e a d n c t i l e s ( [ d i r1 , ’DFrI TH ’ ] , ’DFrI TH ’ , i i ) ;

12 DFrE TH=r e a d n c t i l e s ( [ d i r1 , ’DFrE TH ’ ] , ’DFrE TH ’ , i i ) ;

13 DFxE TH=r e a d n c t i l e s ( [ d i r1 , ’DFxE TH ’ ] , ’DFxE TH ’ , i i ) ;

14 DFyE TH=r e a d n c t i l e s ( [ d i r1 , ’DFyE TH ’ ] , ’DFyE TH ’ , i i ) ;

283

Box 6. Loading monthly averaged variables for heat budget. 284

7. . . . and salt (Box 7). 285

1 %%%%%%%%%%

2 % load 2−d monthly s u r f a c e s a l t f o r c i n g

3 SFLUX=r e a d n c t i l e s ( [ d i r1 , ’SFLUX ’ ] , ’SFLUX ’ , i i ) ;

4

5 %%%%%%%%%%

6 % load 3−d monthly s a l t−r e l a t e d f i e l d s

7 SALT=r e a d n c t i l e s ( [ d i r1 , ’SALT ’ ] , ’SALT ’ , i i ) ;

8 ADVr SLT=r e a d n c t i l e s ( [ d i r1 , ’ADVr SLT ’ ] , ’ADVr SLT ’ , i i ) ;

9 ADVx SLT=r e a d n c t i l e s ( [ d i r1 , ’ADVx SLT ’ ] , ’ADVx SLT ’ , i i ) ;

10 ADVy SLT=r e a d n c t i l e s ( [ d i r1 , ’ADVy SLT ’ ] , ’ADVy SLT ’ , i i ) ;

11 DFrI SLT=r e a d n c t i l e s ( [ d i r1 , ’ DFrI SLT ’ ] , ’ DFrI SLT ’ , i i ) ;

12 DFrE SLT=r e a d n c t i l e s ( [ d i r1 , ’DFrE SLT ’ ] , ’DFrE SLT ’ , i i ) ;

13 DFxE SLT=r e a d n c t i l e s ( [ d i r1 , ’DFxE SLT ’ ] , ’DFxE SLT ’ , i i ) ;

14 DFyE SLT=r e a d n c t i l e s ( [ d i r1 , ’DFyE SLT ’ ] , ’DFyE SLT ’ , i i ) ;

15 oceSPtnd=r e a d n c t i l e s ( [ d i r1 , ’ oceSPtnd ’ ] , ’ oceSPtnd ’ , i i ) ;

286

Box 7. Loading monthly averaged variables for salt budget. 287

8. We also load the monthly snapshot diagnostic outputs for the start (ii − 1) and end (ii) 288



A EXAMPLE MATLAB CODE AND THE GCMFACES FRAMEWORK 24

of month ii needed for computing LHS tendency terms (Box 8). A note here is that, for the289

start of the first month (ii = 1), and the end of the last month (ii = 288), no snapshots are290

available. While this precludes calculation of the tendency terms for the first and last months291

based using snapshots, because the budgets close (for all practical purposes), as will be shown292

below, tendency terms for these months are in principle “recoverable” by summing up the293

various RHS convergence and forcing terms, as described previously.294

1 %%%%%%%%%%

2 % load snapshots f o r computing t endenc i e s

3 i f i i ==1| i i==nn % no i n i t i a l or f i n a l snapshots

4 ETAN SNAP=convert2gcmfaces ( nan∗ ones (90 ,1170 ,2 ) ) ;

5 THETA SNAP=convert2gcmfaces ( nan∗ ones (90 ,1170 , nLevels , 2 ) ) ;

6 SALT SNAP=convert2gcmfaces ( nan∗ ones (90 ,1170 , nLevels , 2 ) ) ;

7 e l s e

8 THETA SNAP=r e a d n c t i l e s ( [ d i r2 , ’THETA’ ] , ’THETA’ , [ ( i i −1) i i ] ) ;

9 SALT SNAP=r e a d n c t i l e s ( [ d i r2 , ’SALT ’ ] , ’SALT ’ , [ ( i i −1) i i ] ) ;

10 ETAN SNAP=r e a d n c t i l e s ( [ d i r2 , ’ETAN’ ] , ’ETAN’ , [ ( i i −1) i i ] ) ;

11 end

295

Box 8. Loading monthly snapshots for volume, heat, and salt budgets.296

9. With the model diagnostics loaded into the Matlab workspace, we assess terms in the volume297

budget equation (2). The tendency is computed by differencing ETAN snapshots corresponding298

to the start and end of the averaging period, dividing by the temporal “width” of the averaging299

period (dt), and scaling by a reference density, so units are kg m−2 (Box 9). The surface forcing300

term is simply the oceFWflx diagnostic. The horizontal transport convergence is computed301

by vertically integrating mass-weighted zonal and meridional velocity fields (UVELMASS and302

VVELMASS) and using the gcmfaces function calc UV conv.m to compute their convergence,303

whereas the vertical convergence is computed by taking the difference between WVELMASS values304

from one layer vertical interface to the next. The result is scaled by density and surface area.305

These tendency, forcing, and convergence fields are then saved out to file.306
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1 %%%%%%%%%%

2 % volume budget

3 % u s e f u l q u a n t i t i e s

4 rhoconst =1029;

5 heatcap =3994;

6 rcp=rhoconst ∗heatcap ;

7

8 % t o t a l tendency

9 tendV =(1./mk3D( mygrid . Depth , mygrid . mskC) ) . ∗ . . .

10 mk3D( (ETAN SNAP( : , : , 2 )−ETAN SNAP( : , : , 1 ) ) / . . .

11 ( secPerHour∗dt ( i i ) ) , mygrid . mskC) ;

12

13 % h o r i z o n t a l convergence

14 hConvV=mygrid . mskC.∗ calc UV conv (UVELMASS,VVELMASS, . . .

15 { ’ dh ’ }) . / (RACMat.∗hFacC) ;

16

17 % v e r t i c a l d ive rgence

18 vConvV=0∗hConvV ;

19 f o r nz=1: nLevels , %di sp ( num2str ( nz ) )

20 nzp1=min ( [ nz+1, nLeve l s ] ) ;

21 vConvV ( : , : , nz )=squeeze (WVELMASS( : , : , nzp1 ) ∗ . . .

22 double ( nz˜=nLeve ls )−WVELMASS( : , : , nz ) ∗ . . .

23 double ( nz˜=1) ) . / ( dzMat ( : , : , nz ) ) ;

24 end

25

26 % f o r c i n g

27 forcV=mygrid . mskC.∗mk3D( oceFWflx , mygrid . mskC) . / . . .

28 (dzMat∗ rhoconst ) ;

29 forcV ( : , : , 2 : nLeve l s )=0∗mygrid . mskC ( : , : , 2 : nLeve l s ) ;

30

31 % save output

32 DT=dt ( i i ) ;

33 save ( [ ’ / myDirectory / budget volume / ’ , num2str ( i i ) , ’ . mat ’ ] , . . .

34 ’ tendV ’ , ’ ∗ConvV ’ , ’ forcV ’ , ’DT’ )

35 %%%%%%%%%%

307

Box 9. Evaluating terms in the vertically integrated volume budget. 308
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10. Next we evaluate the heat budget (4) on the model grid cell. Evaluation of the heat309

budget is somewhat more complicated than the volume budget, and we breakdown the steps310

in detail. First, we evaluate the LHS tendency (Box 10). For the beginning and end of the311

averaging period, we use the ETAN and THETA snapshots to evaluate the s∗θ term (within the312

partial derivative) on the LHS of equation (4). Next, we then take the difference between their313

product at the start and end of the averaging period, and divide by the time difference between314

them, giving units of ◦C s−1.315

1 %%%%%%%%%%

2 % gr id c e l l heat budget

3 % t o t a l tendency

4 HC snap=0∗THETA SNAP;

5 f o r j j =1:2

6 HC snap ( : , : , : , j j )=(THETA SNAP( : , : , : , j j ) . ∗ . . .

7 (1+mk3D(ETAN SNAP( : , : , j j ) . / mygrid . Depth , dzMat ) ) ) ;

8 end

9 tendH=(HC snap ( : , : , : , 2 )−HC snap ( : , : , : , 1 ) ) / . . .

10 ( secPerHour∗dt ( i i ) ) ;

316

Box 10. Evaluating the tendency in the heat budget.317

11. Second, we evaluate the ocean heat transport convergences on the RHS of equation318

(4), involving horizontal and vertical advective and diffusive fluxes (Box 11). We again use319

calc UV conv.m to compute the convergences of the explicit horizontal heat advection (ADVx TH320

and ADVy TH) and diffusion (DFxE TH and DFyE TH). Note that together ADVx TH and ADVy TH321

constitute the s∗θvres term within the divergence operator on the RHS of equation (4) (Box 11).322

We loop through each level, computing the convergence in vertical heat advection (ADVr TH)323

and diffusion (DFrE TH and DFrI TH). Note that ADVr TH is the θwres term on the RHS of (4)324

(Box 11).2 All convergences are normalized by grid volume, VVV, giving units of ◦C s−1.325

2For interested readers, these calculations mirror online computations performed in the MITgcm subrou-
tine gad calc rhs.F. Also, note that, for the vertical diffusion, there are two relevant model diagnostics, one
computed explicitly (see gad calc rhs.F), the other implicitly (see MITgcm subroutine impldiff.F).
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1 % h o r i z o n t a l convergence

2 adv hConvH=calc UV conv (ADVx TH,ADVy TH) . /VVV;

3 dif hConvH=calc UV conv (DFxE TH,DFyE TH) . /VVV;

4

5 % v e r t i c a l convergence

6 adv vConvH=0∗tendH ;

7 dif vConvH=0∗tendH ;

8 f o r nz=1: nLevels , %di sp ( num2str ( nz ) )

9 nzp1=min ( [ nz+1, nLeve l s ] ) ;

10 adv vConvH ( : , : , nz )=squeeze (ADVr TH ( : , : , nzp1 ) ∗ . . .

11 double ( nz˜=nLeve ls )−ADVr TH ( : , : , nz ) ) ;

12 dif vConvH ( : , : , nz )=squeeze (DFrI TH ( : , : , nzp1 ) ∗ . . .

13 double ( nz˜=nLeve ls )−DFrI TH ( : , : , nz ) + . . .

14 DFrE TH ( : , : , nzp1 ) ∗double ( nz˜=nLeve ls ) − . . .

15 DFrE TH ( : , : , nz ) ) ;

16 end

17 adv vConvH=adv vConvH . /VVV;

18 dif vConvH=dif vConvH . /VVV;

326

Box 11. Evaluating the transport convergences in the heat budget. 327

12. Third, and finally, we evaluate the local forcing term due to surface heat exchanges and 328

geothermal fluxes. For the surface contribution, there are two relevant model diagnostics here, 329

the total heat flux (TFLUX) and its shortwave component (oceQsw). Given the penetrating 330

nature of the shortwave term, to properly evaluate the local forcing term in Matlab, oceQsw 331

must be removed from TFLUX (which contains the net latent, sensible, longwave, and shortwave 332

contributions) and redistributed vertically following (6) and (7). 333

In Box 12, we take the first steps, defining the relevant constants in equations (6) and (7). Note 334

that the values of q1 and q2 are “zeroed out” below 200 m depth, as the shortwave radiation 335

does not penetrate below this depth. 336
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1 % s u r f a c e heat f l u x

2 % note that shortwave pene t ra t e s the top 200 m

3 % constant s

4 c p =3994;

5 rho0c p=rho0∗ c p ;

6 R=0.62;

7 zeta1 =0.6 ;

8 zeta2 =20;

9 q1=R∗exp (1/ zeta1 ∗mygrid .RF( 1 : nLeve l s ) ) + . . .

10 (1−R) ∗exp (1/ zeta2 ∗mygrid .RF( 1 : nLeve l s ) ) ;

11 q2=R∗exp (1/ zeta1 ∗mygrid .RF( 2 : ( nLeve l s +1) ) ) + . . .

12 (1−R) ∗exp (1/ zeta2 ∗mygrid .RF( 2 : ( nLeve l s +1) ) ) ;

13

14 % c o r r e c t i o n f o r the 200m c u t o f f

15 zCut=f i n d ( mygrid .RC<−200,1) ;

16 q1 ( zCut : nLeve l s ) =0;

17 q2 ( ( zCut−1) : nLeve l s ) =0;

337

Box 12. Defining terms needed for evaluating surface heat forcing.338

13. Having defined the necessary constants, we loop through each level, subtracting oceQsw339

from TFLUX at the surface and redistributing oceQsw vertically (Box 13). After the geothermal340

component at the seafloor is added in, the local forcing term is normalized by the grid cell341

vertical thickness and the product of density and heat capacity, giving units of ◦C s−1, and the342

output saved to file (Box 13).343
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1 % compute v e r t i c a l l y pene t ra t ing f l u x

2 forcH=0∗tendH ;

3 msk=mygrid . mskC ; msk( i snan (msk) ) =0;

4 f o r nz=1: nLevels , %di sp ( num2str ( nz ) )

5 i f nz==1

6 forcH ( : , : , nz )=TFLUX( : , : , 1 ) − . . .

7 (1−(q1 ( nz )−q2 ( nz ) ) ) ∗oceQsw ;

8 e l s e

9 nzp1=min ( [ nz+1, nLeve l s ] ) ;

10 forcH ( : , : , nz )=forcH ( : , : , nz ) + . . .

11 ( ( mygrid . mskC ( : , : , nz )==1) .∗ q1 ( nz ) − . . .

12 ( mygrid . mskC ( : , : , nzp1 )==1) . ∗ . . .

13 q2 ( nz ) ) .∗ oceQsw ;

14 end

15 end

16 % add geothermal

17 forcH=forcH+geo f l x3d ;

18 forcH=mygrid . mskC.∗ forcH . / ( rho0c p ∗dzMat ) ;

19

20 % save output

21 save ( [ ’ / myDirectory / budget heat / ’ , num2str ( i i ) , ’ . mat ’ ] , . . .

22 ’ tendH ’ , ’ ∗ConvH ’ , ’ forcH ’ , ’DT’ )

23 %%%%%%%%%%

344

Box 13. Evaluating the local forcing term in the heat budget. 345

14. Next, we evaluate the salt budget equation (8). We again walk through the evaluation of 346

the tendency, convergence, and forcing terms step by step. These steps to the salt budget are 347

very similar to the steps to the heat budget. First, we assess the LHS tendency (Box 14). We 348

use ETAN and SALT snapshots from the start and end of the averaging period to evaluate the 349

s∗S term on the LHS of (8). We take the difference between their product at the start and end 350

of the averaging period, and divide by time difference, yielding units of psu s−1. 351
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1 %%%%%%%%%%

2 % gr id c e l l s a l t budget

3 % t o t a l tendency

4 HC snap=0∗SALT SNAP;

5 f o r j j =1:2

6 HC snap ( : , : , : , j j )=(SALT SNAP ( : , : , : , j j ) . ∗ . . .

7 (1+mk3D(ETAN SNAP( : , : , j j ) . / mygrid . Depth , . . .

8 dzMat ) ) ) ;

9 end

10 tendS=(HC snap ( : , : , : , 2 )−HC snap ( : , : , : , 1 ) ) / . . .

11 ( secPerHour∗dt ( i i ) ) ;

352

Box 14. Evaluating the tendency in the salt budget.353

15. Second, we evaluate ocean salt transport convergences on the RHS of (8), involving hori-354

zontal and vertical advective and diffusive fluxes (Box 15). We use calc UV conv.m to compute355

the convergences of explicit horizontal heat advection (ADVx SLT and ADVy SLT) and diffusion356

(DFxE SLT and DFyE SLT). As before, together ADVx SLT and ADVy SLT constitute the s∗Svres357

term on the RHS of (8) (Box 15). We loop through each level, computing the convergence in358

vertical salt advection (ADVr SLT) and diffusion (DFrE SLT and DFrI SLT). ADVr SLT is Swres359

on the RHS of (8). All convergences are normalized by grid volume, VVV, giving units of psu360

s−1.361
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1 % h o r i z o n t a l d iv e rgence s

2 adv hConvS=calc UV conv (ADVx SLT,ADVy SLT) . /VVV;

3 dif hConvS=calc UV conv (DFxE SLT , DFyE SLT) . /VVV;

4

5 % v e r t i c a l d i v e rgence s

6 adv vConvS=0∗tendS ;

7 dif vConvS=0∗tendS ;

8 f o r nz=1: nLevels , %di sp ( num2str ( nz ) )

9 nzp1=min ( [ nz+1, nLeve l s ] ) ;

10 adv vConvS ( : , : , nz )=squeeze (ADVr SLT ( : , : , nzp1 ) ∗ . . .

11 double ( nz˜=nLeve ls )−ADVr SLT ( : , : , nz ) ) ;

12 dif vConvS ( : , : , nz )=squeeze ( DFrI SLT ( : , : , nzp1 ) ∗ . . .

13 double ( nz˜=nLeve ls )−DFrI SLT ( : , : , nz ) + . . .

14 DFrE SLT ( : , : , nzp1 ) ∗double ( nz˜=nLeve ls ) − . . .

15 DFrE SLT ( : , : , nz ) ) ;

16 end

17 adv vConvS=adv vConvS . /VVV;

18 dif vConvS=dif vConvS . /VVV;

362

Box 15. Evaluating the transport convergences in the salt budget. 363

13. Third, and finally, we evaluate the local forcing term due to surface salt exchanges (Box 364

16). There are two relevant model diagnostics here, the total salt flux (SFLUX), which is nonzero 365

only when sea ice melts or freezes, and the salt plume tendency (oceSPtnd), which vertically 366

redistributes salt rejected by sea-ice formation, following Duffy et al. (1999) and Nguyen et 367

al. (1999). The local forcing term is normalized by the grid cell vertical thickness and density, 368

giving units of psu s−1, and the output is saved (Box 16). An example of the budget from these 369

calculations at an arbitrary grid cell is shown in Figure 3. 370



A EXAMPLE MATLAB CODE AND THE GCMFACES FRAMEWORK 32

1 % s u r f a c e s a l t f l u x

2 % note that s a l t ( plume ) f l u x pene t ra t e s v e r t i c a l l y

3 f o r cS =0∗tendS ;

4 f o r nz=1: nLeve l s

5 i f nz==1

6 f o r cS ( : , : , nz )=SFLUX/ rho0 ;

7 end

8 f o r cS ( : , : , nz )=fo r cS ( : , : , nz ) + . . .

9 oceSPtnd ( : , : , nz ) / rho0 ;

10 end

11 f o r cS=fo r cS . / ( dzMat ) ;

12

13 % save output

14 save ( [ ’ / myDirectory / b u d g e t s a l t / ’ , num2str ( i i ) , ’ . mat ’ ] , . . .

15 ’ tendS ’ , ’ ∗ConvS ’ , ’ f o r cS ’ , ’DT’ )

16 %%%%%%%%%%

371

Box 16. Evaluating the local forcing term in the salt budget.372

17. Based on the above volume and salt budgets, the salinity budget can be evaluated as per373

equation (12), as shown in Box 17.374
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1 % s a l i n i t y budget based on s a l t and volume budgets

2 % s c a l e f a c t o r

3 r s t a r f a c =(mygrid . Depth+ETAN) . / mygrid . Depth ;

4

5 % tendency

6 tendSln=(SALT SNAP ( : , : , : , 2 )−SALT SNAP ( : , : , : , 1 ) ) / . . .

7 ( secPerHour ∗( dt ( i i ) ) ) ;

8

9 % advect ion

10 adv vConvSln=(−SALT.∗vConvV+adv vConvS ) . / r s t a r f a c ;

11 adv hConvSln=(−SALT.∗hConvV+adv hConvS ) . / r s t a r f a c ;

12

13 % d i f f u s i o n

14 di f vConvSln=(dif vConvS ) . / r s t a r f a c ;

15 di f hConvSln=(dif hConvS ) . / r s t a r f a c ;

16

17 % f o r c i n g

18 f o r c S l n=(−SALT.∗ forcV+for cS ) . / r s t a r f a c ;

19

20 % save output

21 save ( [ ’ / myDirectory / b u d g e t s a l i n i t y / ’ , num2str ( i i ) , . . .

22 ’ . mat ’ ] , ’ tendSln ’ , ’ ∗ConvSln ’ , ’ f o r c S l n ’ , ’DT’ )

375

Box 17. Evaluating the salinity budget. 376

18. Finally, the end of the loop is reached, and some variables cleared. 377

1 % c l e a r tendenc i e s , convergences , and f o r c i n g

2 c l e a r tend∗ ∗Conv∗ f o r c ∗

3 end

378

Box 18. end loop and clear tendencies, convergences, and forcing. 379
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comments on initial drafts of this memo. Martha Buckley, Nadya Vinogradova, and Katy Quinn 382

made valuable contributions to the Matlab code provided in the Appendix. 383



A EXAMPLE MATLAB CODE AND THE GCMFACES FRAMEWORK 34

References384

• Adcroft, A., and J.-M. Campin, 2004: Rescaled height coordinates for accurate represen-385

tation of free-surface flows in ocean circulation models. Ocean Modell., 7, 269–284.386

• Duffy, P. B., M. Eby, and A. J. Weaver, 1999: Effects of sinking of salt rejected during387

formation of sea ice on results of an ocean-atmosphere-sea ice climate model. Geophys.388

Res. Lett., 26, 12, 1739–1742.389

• Forget, G., J.-M. Campin, P. Heimbach, C. N. Hill, R. M. Ponte, and C. Wunsch, 2015:390

ECCO version 4: an integrated framework for non-linear inverse modeling and global391

ocean state estimation. Geosci. Model Dev., 8, 3071-3104.392
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