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Scope of Lecture
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• How is it done?
• What good is it? 
• What use does it have?
• Are there caveats? 
• What research issues are there?
• How best to use state estimation?
• Where to turn to to learn more?

State estimation (data assimilation) is about combining 
observations and models, but what is it actually doing?



What is State Estimation?
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State estimation (data assimilation) is 
a means to analyze observations using models,  

equivalent to fitting a curve through data.

Purpose of curve fitting
• Filter out noise in the data to more 

accurately describe the system and to 
gain insight into underlying processes,

• Interpolate/extrapolate the data to 
aspects not directly measured,

• Test theories against observations.
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Overview of the Lectures
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1. State estimation is an inverse problem,

2. Estimation theory provides a framework to 
solving the problem, 

3. Approximations and assumptions dictate what 
is being solved. 



Lecture Outline
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1. Basic Machinery (this lecture)
The mathematical problem (inverse problem), Linear 
inverse methods, Singular value decomposition (SVD), 
Rank deficiency, Gauss-Markov theorem, Minimum 
variance estimate, Least-squares, 

2. Methods of state estimation (tomorrow)
Kalman filter, Rauch-Tung-Striebel smoother, 
Adjoint method, 

3. Practical Matters (Saturday)
Error estimation, representation error, covariance, 
approximate Kalman filters, other data assimilation 
methods (Optimal Interpolation, 3DVAR).



Reference
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Ocean Observations

8ECCO Summer School 2019 State Estimation 1 (I.Fukumori)

Observations are sparse, intermittent, irregular, 
noisy and limited in what can be measured. 

Argo: TS profile down to 
2000m depth, once every 10-

days & every 300 km 

Jason: Global sea level 
measurements every 10-days 

with a 300km cross-track 
distance at the Equator



Models
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General circulation models provide complete descriptions of the 
ocean, motivating their use as a “curve” to fit the observations.

Atmospheric Reanalyses: Combines 
observations with weather forecasting 
models to yield the most complete 
description of the global atmosphere.  
e.g., ERA-5 relative vorticity (FZ Juelich) 

“Perpetual Ocean”
ECCO2 model simulation of 

surface current (drifter tracks)



State Estimation
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State estimation (data assimilation) is about 
combining observations with models so as to 

a) Reconcile diverse measurements into 
complete and coherent descriptions of the 
entire ocean,

b) Improve the accuracy of the model.

ECCO Summer School 2019

Mathematically, the problem is an inverse problem and 
is most commonly solved by least-squares. 



The Mathematical Problem
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It is instructive to describe the problem mathematically to 
gain insight into what combining model and data is about. 
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Relating observations 
to model ≈ ˆt ttH x y
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Model
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+ = +1t t tx x GuA
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xτ, yτ : zonal & meridional wind stress
q: heat flux, e: evaporation,
r: precipitation

The Mathematical Problem
= −0, 1t M



Model
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+ = +1t t tx x GuA
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+ = +1t t tx x GuA
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+ = +1t t tx x GuA
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second-order time-stepping
(e.g., Adams-Bashforth)
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Model
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+ = +1t t tx x GuA
Observations ≈ ˆt ttH x y

state controldata

Given observations        what is the ocean state       ?
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The Mathematical Problem
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Linear Inverse Problem
Given matrix        and vector       what is vector       ? 
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E xŷ
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The Mathematical Problem

There are always more unknowns (number of elements) than 
knowns (number of data), rendering inverse problems (state 
estimation) mathematically ill-posed; i.e., there is no unique 
solution.  One needs to change what it means to solve a 
problem, recognizing what is resolved and what is not. 

ˆ≈Ex y
M N×

M N
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The Mathematical Problem
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Explicitly writing misfits                        where               
the problem is mathematically  

1 2,    nr r r ( )ŷ= ii ir a bt− +

Line-fitting is also fundamentally an ill-posed problem, as typically 
no solution exactly satisfies the problem when using observations. 
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The Mathematical Problem
The classic oceanographic inverse problem is that of determining 

reference level velocities in geostrophic calculations. 

Wunsch (1977, Science)
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The singular value decomposition of matrix         is useful in 
gaining insight into the problem and its solution. 

Singular Value Decomposition (SVD)

1

r
T

i i i
i

λ
=

=∑E u vmatrix
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Inverse Problem ˆ≈Ex y
E

where

rank( )min ,r M N≤
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Singular Value Decomposition (SVD)
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Empirical orthogonal functions and principal components.
are singular vectors of data. Geometrically        (        ) can be 
interpreted as the most common structure among the 
columns (rows) of         after        (       )   i=1,k-1. 

1

r
T

i i i
i

λ
=

=∑E u v
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SVD

ku kv

E iu iv

e.g., sea level  anomaly 
along Equator

First two EOFs

Longitude (deg E)

Reconstruction with 
first two EOFs

2T
i i iλ=EE u u

2T
i i iλ=E Ev v

EOFs are Singular Vectors



i.e., there is an infinite number of possible solutions. 

for                      remain undetermined, but they have no bearing on the 
inverse problem and, therefore, could be chosen arbitrarily;  
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We have where
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One approach is to seek the “simplest” solution; “Ockham’s razor”
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a) is the SVD inverse of       .

b) The SVD inverse is equivalent to Moore-Penrose 
inverse, pseudo-inverse, right-inverse, left-inverse. 
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Properties of SVD Inversion

can also be written as 1ˆ ˆT−=x VΛ U y

1) The SVD solution  
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2) The SVD solution is identical to ordinary least-squares solution 
(when the latter exists).    

( ) ( )ˆ ˆTJ = − −xEy y Ex

( ) 1
ˆ ˆT T−
= E E Ex y

Seek solution that minimizes residual norm of the inverse problem;  

By setting 0J∂
=

∂x

a) is the left-inverse of       ; 

b) Equivalence to SVD can be shown by substitution. 
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Estimation error covariance matrix

3) Error estimate of  

4) Row and column weighting changes SVD;

( )1ˆ ˆT−− = −x x VΛ U y y

1 T−=x VΛ U ySVD estimate with error-free data
Estimation error due to data error

( ) ( )ˆ ˆ T
yy = − −R y y yy

yy yyσ=R I

The smaller the singular values, the larger the estimation error; 
i.e., there is a trade-off between accuracy & resolution.
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statistical expectation

Properties of SVD Inversion
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Summary of Inverse Problem and SVD

a) State estimation (data assimilation) is an inverse problem,

b) Most (all) oceanographic inverse problems are rank deficient 
(mathematically ill-posed).  Choices are made to obtain particular 
(optimal, objective) solutions; e.g., SVD solution
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Solve                       incorporating 
prior statistical information 
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Other Inverse Methods

• Minimum Variance Estimate
aka Gauss-Markov theorem, basis of objective mapping. 
Closely related to the Kalman filter and related smoothers in state 
estimation. 

• Least-Squares
Closely related to the Adjoint Method (4dVAR) in state estimation.

… which turn out to be the same.

ˆ≈Ex y
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Gauss-Markov Theorem
Suppose we estimate       from       using prior statistical knowledge;x ŷ

0=x T
xx=xx R

0=y T
yy=yy R T

xy=xy R

Seek a linear solution of form                       that would have the 
least posterior error for each of its elements.

ˆ ˆ=x By

( ) ( ) ( ) ( )ˆ ˆ T T

T T T T T T

T T T

≡ − − = − −

= − − +

= − − +

xx

yy xy xy xx

B B

B B B

P x x x x y x y x

yy xy yx xx

R R R

B

B B RB B

Error covariance of      x̂

statistical 
expected value
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Thus, choosing                             minimizes all diagonal elements of          
leading to          

1−= xy yyR RB

( ) ( )1 1 1

T T T

T T− − −

= − − +

= − − − +

xx yy xy xy xx

xy yy yy xy yy xy yy xy xx

B B BP R R R R

R R R R RB B R R R

B

R

xxP
1ˆ ˆ−= xy yyx R R y

1 T−= −xx xx xy yy xyP R R R R

1) The estimate (GM Estimate) is a Best Linear Unbiased Estimate (BLUE),
2) Errors are reduced from prior estimates by information from       (2nd

term in         ),  

3) Estimate is the basis of objective mapping.  

y
xxP

Gauss-Markov Theorem

re-written by “completing the square”

( ) ( )1 1 1T TT TT − − −− − = − − −C BA A A A AB BC C BC BC BA

[ ]2 22 / 2 / 4a b a b a bx x ax + = + −
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1ˆ ˆ−= xy yyx R R y

Objective Mapping is a GM Estimate

Objective mapping

ix jy

( )

( )

2

2
2

2

2 2
2

exp
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i j
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j k
jkjk

n

σ
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σ δ
λ
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 −
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x y
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y y

yy

r r
R

r r
R

Assuming that the field has a spatially 
uniform Gaussian covariance function with 
standard deviation        and correlation 
distance       , and that the observations      
have a random white noise of variance         , 

ky

σ
λ y

2n

Map irregularly sampled observations         
to values on a regular grid       . 

ŷ
x̂

where

i j−x yr r

y
j k− yr r

[Bretherton et al., 1976]
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Minimum Variance Estimate

to solve

1ˆ ˆ−= xy yyx R R y
1 T−= −xx xx xy yy xyP R R R R

Use Gauss-Markov theorem

ˆ≈Ex y ˆ+ =Ex n y

( ) ( )T T= + + = +yy xx nnR E Ex n E Ex n R R

( )T T T T= + = =xy xxR x x n x RExE E

T =xn 0

Then, ( ) 1
ˆˆ T T −

= +xx xx nnER RE Ex R y

( ) 1T T −
= − +xx xx xx xx nn xxP R R R RE ERE E

T≡xxR xx
T≡nnR nn

where



1) The product                                                 can be regarded as an 
inversion of        incorporating prior statistical knowledge,

2) Assumptions about                   are not arbitrary.  Solution      and  
residual                        must be consistent with these assumptions, 
otherwise the assumptions (and solution) must be rejected.

3) is not simply data error (i.e., error of     ) but the residual of the 
inverse problem. 
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Minimum Variance Solution of ˆ≈Ex y

is ( ) 1
ˆˆ T T −

= +xx xx nnER RE Ex R y

( ) 1T T −
= − +xx xx xx xx nn xxP R R R RE ERE E

ˆ ˆˆ= −y En x
x̂

E
( ) 1T T −

+xx xx nnER R RE E

xxR nnR

n ŷ

Properties of Minimum Variance Estimate

given prior error T=xxR xx ( )( )ˆ ˆ T= − −nn Ex yR Exy

with posterior error
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Least-Squares 
Find solution to 

that minimizes ( ) ( )1 1ˆ ˆT TJ − −= − − +x W x xy E Sy E x

• ordinary least-squares

• weighted least-squares

• tapered least-squares

• generalized least-squares

• regularized least-squares

=W I 1− =S 0

( )diag=W w

( )diag=S γ

( ) 0
ij
≠W

( ) 0
ij
≠S

symmetric & positive definite weights

Typically, one chooses 
T= ≡nnW R nn T= ≡xxS R xx

ˆ= −n y Ex

1− =S 0

ˆ≈Ex y
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Why choose inverse error covariance as weights? 

( ) ( )1 1

 2  2

ˆ ˆT T T T

M N

i i
i i

J

n x

− − ′ ′ ′ ′= − − + = +

′ ′= +∑ ∑

x W x x Sy x xyE xE n n

By choosing ( ) ( )T= ≡ − −nnW R x yE Exy T= ≡xxS R xx
elements of the scaled least-square problem become normalized (i.e., 
uncorrelated and equal variance, so elements are on equal footing). 

/2 1/2T=W W W

( )/2 ˆT−′ ≡ −n yW Ex /2T−′ ≡x S x

( )( )/2 1/2 /2 /2 1/2 1/2ˆ ˆ TT T T T− − − −′ ′ = − − = =n n W x x W W W Wy WE Ey I

/2 1/2T=S S SWrite Cholesky decomposition
11 12 1

22 2

M

M

MM

w w w
w w

w

 
 
 
 
 
 

non-singular 
upper triangle matrix

In terms of scaled variables

and        becomes

elements are uncorrelated and are normalized (unit variance)

J

0
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Example of de-correlating variables

/2 1/21 0.99 1 0 1 0.99
0.99 1 0.99 0.14 0 0.14

T    
= = =    
    

W W W

1/2

2

1 0
7.0 7.1

T n
n

−   ′ = =   −  
n W n

1
/2 1 0 1 0

0.99 0.14 7.0 7.1
T

−

−    
= =   −   

W

Instead of having two of the same in original form, the scaled 
version has just one of them as its variable and the scaled 
difference between them as another. 

Why choose inverse error covariance as weights? 
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Minimize ( ) ( )1 1ˆ ˆT TJ − −= − − +x W x xy E Sy E x

Solve 0J∂
=

∂x

1

T

N

s s s
x x

 ∂ ∂ ∂
≡  ∂ ∂ ∂ x

1

1 1

1

M

M

N N

q q
x x

q q
x x

∂ ∂ 
 ∂ ∂ ∂

≡  
∂  ∂ ∂  ∂ ∂ 

q
x

( ) ( )T T∂ ∂
= =

∂ ∂

q r r q
r

q q

( ) T∂
=

∂
Bq B

q ( )T∂
=

∂
q B B

q

( ) ( ) 2
T

T
∂

= + =
∂

q Aq
A A q Aq

q

Basic notation of vector differentiation

Least-Squares 

when      is 
symmetric

A



41State Estimation 1 (I.Fukumori)ECCO Summer School 2019

Minimize ( ) ( )1 1ˆ ˆT TJ − −= − − +x W x xy E Sy E x

Solve 0J∂
=

∂x

( ) ( )T T∂ ∂
= =

∂ ∂

q r r q
r

q q
( ) T∂

=
∂

Bq B
q

( )T∂
=

∂
q B B

q

( )
( ) ( ) ( )

( )
( )

1 1

1 1

1 1 1

ˆ
ˆ1 1 1

2
ˆ

ˆ

ˆ

ˆ

2 2
T T

T

T T

J − −

− −

− − −

∂ −∂ ∂ ∂
= − − +

∂ ∂ ∂ − ∂

= − − +

= + −

x
x W x x S x

x x x x

W x S x

W S x

y
y

E
E E

E

E E

E E E W

y
y

y

y

( ) 11 1 1ˆ ˆT T−− − −= +E EW S WEx yTherefore, 

Least-Squares 

( ) ( ) 2
T

T
∂

= + =
∂

q Aq
A A q Aq

q
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1. When                                      (ordinary least-squares), 

which reduces to familiar forms in particular examples; 
e.g., 

If 
1ˆ1

1 ˆM

y
x

y

   
   =      
   

( )1 1 T=E

Property of Least-Squares Solution 
( ) ( )1 1ˆ ˆT TJ − −= − − +x W x xy E Sy E x

is minimized by ( ) 11 1 1ˆ ˆT T−− − −= +E EW S WEx y

1− =S 0 =W I

( ) 1
ˆ ˆT T−
= E E Ex y

1

ˆ1
i

M

iM
yx

=

= ∑then 
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Property of Least-Squares Solution 
( ) ( )1 1ˆ ˆT TJ − −= − − +x W x xy E Sy E x

is minimized by ( ) 11 1 1ˆ ˆT T−− − −= +E EW S WEx y

2. This solution can also be written as   ( ) 1
ˆˆ T T −

= +E E Ex S S W y
using a variant of the “matrix inversion lemma”

( ) ( )1 11 1 1T T T T− −− − −+ = +AB BAB C B C B A B C

Remarkably, the Least-Squares solution is the same as 
the Minimum Variance Estimate

( ) 1
ˆˆ T T −

= +xx xx nnER RE Ex R y

when                   and                      as is usually done.   xx=S R = nnW R
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Property of Least-Squares Solution 
( ) ( )1 1ˆ ˆT TJ − −= − − +nn xxx R x x Ry EyE x

is minimized by ( ) 11 1 1 ˆˆ T T−− − −= +nn xx nnE RER REx y

3. The formal error of the canonical least-squares estimate is 
therefore,  

( ) 1T T −
= − +xx xx xx xx nn xxP R R R RE ERE E

This can also be written as 

( ) 11 1  T −− −= +xx xx nnE R EP R
using the “matrix inversion lemma”

( ) ( )1 11 1T T T− −− −+ = − +C B A B C CB BCB A BC

This latter expression of 
error is the inverse of the 
Hessian of       ;  J

( )1 1 11 ˆ 
2

T TJ − − −∂
= + −

∂ nn xx nnE E ER R x R
x

y

( )1 11 1  
2 2

TJH − −∂ ∂
∴ = = +

∂ ∂ nn xxE ER R
x x
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Summary of GM Inverse and Least-Squares

a) The minimum variance solution (Gauss-Markov inversion) is

b) The least-squares solution minimizing the sum of residual and 
solution norms weighted by their respective error covariance 

is the same as the minimum variance solution.

( ) 1
ˆˆ T T −

= +xx xx nnER RE Ex R y

( ) ( )1 1ˆ ˆT TJ − −= − − +nn xxx R x x Ry EyE x

ˆ≈Ex ySolving given
T=xxR xx ( ) ( )ˆ ˆ T= − −nn Ex yR Exy
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c) Neither solution assumes Gaussian probability distribution. The  
methods above only assumed covariances and should not be confused 
with Maximum Likelihood Solutions and/or related Bayesian methods 
that are based on probability distributions. 

( ) 1
ˆˆ T T −

= +xx xx nnER RE Ex R y

( ) ( )1 1ˆ ˆmin min T TJ − − ≡ − − + nn xxy y x x R xEx RE

Minimum Variance Estimate

Least-Squares Estimate

Pr
ob

ab
ili

ty

Realization

The solutions are the same when the 
probability distribution is Gaussian, but 
are generally different otherwise. 

Summary of GM Inverse and Least-Squares
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Concluding Remarks (Lecture 1)

1) Combining data and model is mathematically an inverse problem,

2) Inverse problems with data are invariably ill-posed and do not have 
unique solutions in the strict mathematical sense,

3) Inverse methods provide objective means to obtaining optimal 
solutions, 

4) Minimum error variance estimate and least-squares estimate are 
equivalent. 

a) Minimum Length (Singular Value Decomposition),
b) Minimum Variance,
c) Least-Squares,
d) Maximum Likelihood,
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Next Topic

1

2

1

1

ˆ
ˆ

t

t

t

t

t

t

t

+ +

+

+

 
 
 
 
 
 
 − −
 

− − 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  ≈ 
 
 
 

 




x
x
x

y
y

0
0

H
H

A I G
A I

u
uG

ˆ≈Ex y

However, the problem can be re-formulated into a series of 
smaller ones, taking advantage of the problem’s structure, and 
solving them using these basic methods. 

Typical dimensions of         in state estimation are O(106~109), 
making direct application of basic inverse methods impractical.  

E

• Kalman filter and related smoothers
• Adjoint method

M N×
M N
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