Variability of spice injection in the upper ocean of the southeastern Pacific
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» The interannual-decadal variability of interior SPA in the SEP has a significantly negative

N - . , correlation to the low-frequency ENSO index, with larger (smaller) SPA during La Nina (El
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surface spiciness (white). The black box in (¢) marks the key region of anomaly in the southeastern Pacific Ocean (SEP) and Ekman velocity (blue). (b) Anomalies of buoyancy flux (black) as well as its two components of heat flux (red) and NlIlO) conditions.
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